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ABSTRACT 

Using prefabricated components has been continuously gaining momentum in 

bridge constructions because of its numerous advantages over conventional cast-in-place 

construction methods. However, there are few, if any, projects that have utilized 

prefabricated components to construct the entire bridge piers because the seismic 

sufficiency of such structures has not been adequately addressed. Therefore, the studies in 

this dissertation were conducted to investigate the prefabricated bridge pier systems 

suitable for seismic regions. A pier system consisting of precast column, precast pile cap, 

and pile foundation was developed. For this system, the prefabricated components are 

integrally connected utilizing column socket connection and pile pocket connections that 

are preformed in the pile cap with corrugated steel pipes. An experimental study was 

performed using eight specimens that modeled the full-scaled connection interfaces, 

demonstrating that side shear strength in the column socket connection is sufficient to 

transfer large vertical loads from the column to the pile cap. An outdoor test was 

subsequently conducted on the column-pile cap-pile system at a cohesive soil site. A half-

scale test unit was constructed on the foundation consisted of four vertical steel piles and 

four battered steel piles. To evaluate the system performance as well as the behaviors of 

various connections and pile foundation, the test unit was subjected to different 

combinations of vertical and lateral loads. Throughout the test, the socket and pocket 

connections maintained fixity with the formation of a plastic hinge in the column, 

evidencing that the system can ensure life safety and collapse prevention during 

earthquake events. Along with the results of numerical analysis, the battered piles were 

found to subject to larger axial forces but less bending moments than the vertical piles. 
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Following the successful development and investigation of the prefabricated column-pile 

cap-pile system, the controlled rocking pile foundation (CRPF) system with replaceable 

bar fuses was studied through a numerical approach. The CRPF system allows the pile 

cap to rock on the pile foundation and dissipates seismic energy through the inelastic 

deformations of the bar fuses connecting the pile cap and piles, thereby achieving 

additional seismic performance objectives such as immediately openings after an 

earthquake, shorter repair times, and lower repair costs. Analysis results indicated that, 

subjected to a severe earthquake, the CRPF system showed negligible residual 

displacement and maintained elastic behavior except the bar fuses as designed. The 

damaged fuses can be rapidly replaced to recover the bridge seismic resistance after the 

earthquake.
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CHAPTER 1.    INTRODUCTION 

Background 

“To produce a safe bridge that is aesthetically pleasing, and satisfies all functionality 

requirements at a cost acceptable to the owner,” said Dr. Man-Chung Tang, a notable bridge 

engineer, regarding the mission of bridge design. 

Bridges are constructed to create stable and permanent connections crossing over 

physical obstacles such as a body of water, valley, or road. By spanning two or more far-off 

points and eventually reducing the distance between them, bridges have been influencing 

people’s culture and changing the day-to-day way in which people live, work, and relate to 

one another. The history of bridges started in ancient times. Like any human construction, 

different types of bridges have been constructed throughout their history as materials and 

technologies advanced. Nowadays, the girder bridge is the most commonly utilized bridge 

form throughout the United States and the world (Barker & Puckett 2013). 

The structural components in a typical girder bridge (Figure 1.1) fall into two 

categories: superstructure that provides the horizontal spans and substructure that supports 

horizontal spans (AASHTO 2012). The loads acting on the bridge deck are carried by the 

supporting girders in the superstructure, mainly through their bending capacity. As 

prestressed concrete technologies rapidly developed after World War II, prestressed concrete 

girders became popular for the highway bridges. Possible span lengths of current prestressed 

concrete girders range from 12 to 61 m (40 to 200 ft) (Barker and Puckett 2013). 



www.manaraa.com

2 

 

Figure 1.1  Typical girder bridge components 

Piers in girder bridges support the superstructures vertically at their intermediate 

points and transfer loads to the foundations. Nowadays, piers are predominantly constructed 

using reinforced concrete. Although piers are traditionally designed to mainly carry gravity 

loads, these days it is common to take the high lateral seismic loads into account. Many types 

of piers have been built, and they can be distinguished by their framing configuration: 

column bent, pile bent, hammerhead, or pier wall. Selection of the type of piers should be 

based on functional, structural, esthetical, and geometric requirements. Often times, pier 

types are mandated by transportation agencies or owners. Among the different pier 

configurations, the column bent pier (Figure 1.2), consisting of a bent cap and supporting 

columns, has a lower construction cost. Geometry of the column bent pier is suitable to 

support either a steel or prestressed concrete girder superstructure. The reinforced concrete 

column bent is by far the most popular type of pier used in girder bridges (Wang 2014). 
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Figure 1.2  Typical column bent pier in the girder bridge 

Foundation is part of bridge substructure, transferring loads from the bridge structure 

to the ground. In instances where the soil near the ground surface is not competent enough to 

carry the design loads, deep foundation involving deeper geologic materials is merited. Steel 

driven piles are extensively used for the deep foundation in highway girder bridges (Ma and 

Deng 2014). They are typically driven in groups, and capped with a thick reinforced concrete 

mat, commonly referred to as pile cap, to provide a suitable footing for bridge piers. 

Prefabricated for Girder Bridge 

Rising traffic congestion is a global phenomenon, from Los Angeles to Beijing, from 

London to Mumbai (INRIX 2018). Traffic delay associated with congestion induces not only 

direct costs relating to the value of fuel and time wasted, but also indirect costs referring to 

freight and business fees from company vehicles idling in traffic. One source of traffic 

congestion is the designation of work zones, which accompany construction activities on the 

highway. These have been cited by travelers as one of the most frustrating conditions on their 

trips (Cambridge Systematics, Inc. and Texas Transportation Institute 2005). As bridges are a 

critical component of the highway system, any bridge-related activities such as construction, 

repair, or basic maintenance will disrupt traffic. Transportation agencies are therefore 
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seeking methods for delivering high-quality bridge projects in reduced construction time. 

Because prefabricated bridge components are manufactured off-site and assembled on-site, 

they offer potential time-savings in construction. The prefabricated components also have a 

high product quality due to being repetitively produced in a controlled environment, which 

reduces the need for maintenance and repair. Furthermore, limiting on-site work improves 

safety for both the traveling public and construction workers and reduces environmental 

impacts. For these reasons, transportation agencies have been gradually embracing 

prefabricated technologies for highway bridge projects. 

As the most commonly used prefabricated products, precast concrete components 

have been an integral part of bridge construction for many years. In girder bridges, they are 

used in a variety of locations. Precast girders are extensively used throughout the United 

States and the world, which are typically made composite with deck slab (Figure 1.3). 

Precast concrete has also been used in bridge substructure. Figure 1.4 shows examples of 

precast bent cap and precast abutment. 

 

Figure 1.3  Precast girders made composite with deck in the Magnolia Bridge, Louisiana 
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Figure 1.4  Precast bent cap (Lake Belton Bridge, Texas) and precast abutment (Davis 

Narrows Bridge, Maine) 

As manufacturing processes and construction technologies advanced, systems, or 

even full bridges, were constructed by assembling precast concrete components to address 

both the needs for fast project delivery as well as a high-quality product. Precast deck that is 

composed of a series of precast concrete panels (Figure 1.5) can produce full precast 

superstructure through composite connections to the supporting precast girders. An example 

of advancements that occurred with the implementation of precast concrete substructure is 

the US 6 Bridge over Keg Creek, Iowa (AASHTO 2011). The project (Figure 1.6) utilized 

precast concrete bent caps and columns, precast concrete abutments, and grouted splice 

couplers for connecting precast components. With the precast system and associated 

construction technologies, the mobility impact time due to the project was shortened from 

approximately six months to a total time of only two weeks. The I-5 Grand Mound Bridge 

(Figure 1.7) that was constructed with precast segmental columns, precast bent caps, and all 

precast superstructure, is a project that demonstrates the feasibility of full-precast girder 

bridge (ABC-UTC 2011). 
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Figure 1.5  Full precast superstructure utilizing precast deck in the Mackey Bridge, Iowa 

  

Figure 1.6  Precast substructure in the US 6 Bridge over Keg Creek, Iowa 

  

Figure 1.7  Precast substructure and superstructure in the I-5 Grand Mound Bridge, 

Washington 

A critical factor for further promoting precast concrete for bridge projects lies in the 

connections between precast components. These connections should not only be easy to 
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construct, but they should also ensure dependable structural performance. Due to the lack of 

direct force transferring mechanisms between precast components, providing properly 

connections for precast bridges is challenging. Furthermore, if the bridges are located in 

seismic hazard zones, the seismic loads will make the design of connections more difficult. 

Earthquake Damage to Bridges 

The bridges in many regions worldwide with high population density are exposed to 

the risk of damage from earthquake (Figure 1.8). Earthquake damage to bridges that are 

located in these regions can cause severe consequences. Aside from the risk to people on or 

below the bridge, bridge closure in the immediate aftermath of an earthquake can cause vital 

links in the transportation system to be severed, impairing emergency response operations 

and resulting in post-earthquake economic impact (Moehle and Eberhard 2003). 

 

Figure 1.8  Global seismic hazard map (GSHAP) 

The damages that each bridge has suffered because of an earthquake has varied with 

the characteristics of the ground motion and the construction details of the particular bridge. 

The following section briefly reviews the typical primary damages in past earthquakes that 

have triggered the collapse of bridges. 
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Figure 1.9 shows the examples of span unseating at movement joints. These simple 

spans were toppled from their supports either due to shaking or differential support 

movement associated with earthquake ground motion. Unseating has been a particular 

problem with short seating lengths that were common in older construction. 

  

Figure 1.9  Span unseating in the 1964 Niigate Earthquake (left) and the 1989 Loma Prieta 

Earthquake (right) 

In the bridges constructed prior to the 1970s, the amount and details of transverse 

reinforcement in columns provided negligible confinement to the concrete. As a result, the 

columns exhibited insufficient flexural ductility to withstand earthquakes, as shown in Figure 

1.10. Shear failures of concrete bridge columns (Figure 1.11) have occurred in many 

earthquakes, which also ascribed to relatively light transverse reinforcement. Failures 

associated with improper termination or lap splices of longitudinal reinforcement in concrete 

bridge columns were identified in past earthquakes. The practice in Japan has been to cutoff 

some of longitudinal reinforcement at the mid height of column, leading to failure near the 

cutoff point, as shown in Figure 1.12. For construction convenience, column longitudinal 

reinforcement in old bridges was often lap-spliced or weld-spliced immediately above the 

foundation, where the regions experienced high flexural demand during earthquakes. Figure 

1.13 shows damage to the base of a column, attributable to weld-splice failure, in the 1995 
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Kobe Earthquake. Concrete columns also failed due to inadequate anchorage of longitudinal 

reinforcement. An example is shown in Figure 1.14.  

 

Figure 1.10  Confinement failure of column in the 1971 San Fernando Earthquake 

 

Figure 1.11  Shear failure of a column in the 1994 Northridge Earthquake 

 

Figure 1.12  Failure of column with terminated longitudinal reinforcement in the 1995 

Hyogo-Ken Nanbu Earthquake 
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Figure 1.13  Weld splice failure of column longitudinal reinforcement in the 1995 Kobe 

Earthquake 

 

Figure 1.14  Column failure due to longitudinal reinforcement pullout in the 1971 San 

Fernando Earthquake 

In reviewing earthquake damages to bridges, the majority tend to be direct 

consequences of the early elastic design philosophy that was uniformly adopted for bridge 

seismic design prior to the 1970s (Priestley et al. 1996). 

Seismic Design Philosophy 

Following several damaging earthquakes, particularly the 1971 San Fernando 

Earthquake, the procedure of bridge seismic design transitioned from the elastic design 

approach to the capacity design approach. With the early elastic design approach, the load 

demand produced by earthquake is simply taken as a lateral force that equals to a specified 

fraction of the permanent weight of the bridge, and the entire bridge was designed to remain 
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elastic when exposed to this lateral force. Designing bridges to respond elastically avoids 

damage, but is not economically feasible in moderate to high seismic regions because very 

large forces will be developed in the columns and foundations. Furthermore, there is a 

possibility that an earthquake larger than the design earthquake will occur during the service 

life of the bridge. In this case, the elastic design approach seriously underestimated the 

seismic displacement, and often led to incorrect moment patterns during earthquakes, which 

may cause catastrophic failure of bridges. The capacity design approach, unlike the elastic 

design approach, allows the bridges to be damaged in a certain manner, but without collapse 

of all or part of the bridge during the design earthquake. This would assure “life-safety” in an 

economical way. With this “no-collapse” philosophy, only ductile yielding is permitted in the 

selected members that are specifically designed and detailed. As a consequence, the yielding 

of these selected members places a cap on the forces in the rest of members during an 

earthquake greater than anticipated in the design. The ductile behavior of the yielded 

members keeps the bridge from collapsing, and other members of the bridge, referred to as 

capacity protected components, can be economically designed to remain elastic under the 

maximum resistance (i.e. capacity) of the yielded members rather than inertial force 

associated with the mass of the bridge. 

Using the capacity design approach, yielding of selected members protects all the 

other bridge members against damage. The region pre-selected to experience yielding during 

the design earthquake is commonly referred to as the plastic hinge in earthquake engineering. 

Theoretically, a designer can locate the plastic hinge anywhere in the lateral load path of the 

bridge as long as the overall stability is provided. However, it is a practice in seismic design 

to keep plastic hinges above the ground or just below the ground line for post-earthquake 
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inspection and subsequent repair if necessary. For the girder bridge with column bent piers 

and steel driven pile foundations, the practices seek to locate plastic hinges at the ends of 

columns. Thus, the capacity protected components such as foundation, bent cap, 

superstructure, and their connections, need to be designed and detailed to remain essentially 

elastic when the column reaches its plastic moment capacity. 

Seismic Resilient Structures 

Bridges designed following the conventional capacity design approach would ensure 

life safety through forming the plastic hinges in preselected locations. However, they often 

sustain excessive damages and exhibit considerable residual drifts following major seismic 

events. The damaged bridges can disrupt traffic, necessitate time-consuming inspections, and 

may be difficult to repair. Addressing these issues, seismic resilient structures (such as 

rocking structures) have been developed to achieve additional seismic performance 

objectives such as mitigating economic losses, maintaining bridge functionality, and 

improving reparability. 

Structures with rocking mechanism can suffer less damage, even experiencing large 

deformation for the duration of shaking. In addition, rocking structures have recentering 

capacity resulting from unbonded posttensioning or structural self-weight. Unlike 

conventional structures designed to form plastic hinges, the rocking structures exhibits a 

bilinear elastic behavior with minimal energy dissipation capacity, as shown in Figure 1.15. 

The softening in the slope of the load-displacement response is identified by the uplift of the 

structures with respect to their footings. As a result of the elastic behavior, energy dissipating 

elements are required for the rocking structures to provide sufficient hysteretic energy 

dissipation capacity. The combination of rocking mechanism and additional energy 

dissipating elements leads to a hysteresis behavior typically referred to as flag-shaped.  



www.manaraa.com

13 

   
(a) conventional (b) bilinear elastic (c) flag-shaped 

Figure 1.15  Idealized hysteresis behavior of conventional plastic hinge system and rocking 

system 

Research Motivation 

Based on the aforementioned seismic design philosophy, the capacity protected 

components should be designed and detailed based on an inelastic response. For the bridges 

attempting to profit from precast concrete technologies, these seismic requirements pose a 

challenge to the design of systems and connections between precast components. 

Historically, earthquake damage to the precast systems occurred mainly at the connections 

between the components because of poor detailing to withstand many cycles of load reversals 

(Kunze et al. 1965; Lew et al. 1971). Therefore, the concept of “emulative” is commonly 

accepted for designing seismic connections in precast bridges, which requires the 

connections between precast components to be designed and detailed to act as a conventional 

concrete construction joint. Transportation agencies, industry, and academia have been 

successfully developing a number of connection details for precast bridge members that are 

emulating cast-in-place connections, promoting the use of precast concrete in the bridge 

industry (Marsh et al. 2011). However, the precast column bent pier with steel pile 

foundation was seldom, if ever, encountered in practice because of the lack of the structurally 

dependable and easy-to-construct connections for precast pile cap to connect precast column 
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and steel piles. During a moderate-to-high earthquake, plastic hinges are often pre-selected to 

form in the columns. The column-to-foundation connections thereby would experience the 

high moment and shear demands induced by the column plastic hinging mechanism, 

superimposed on an axial load in the column. In the pile foundation, each single pile would 

be subject to a considerable combination of axial load, shear, and bending moment that are 

induced by both gravity and column plastic hinging mechanism. These seismic demands 

(Figure 1.16) make the design of connections in precast pile cap more challenging. In 

addition, the difficulty in experimentally testing a soil-foundation-structure system causes a 

lack of information on the system behavior of precast column bent pier with steel H-pile 

foundation, particularly under earthquake excitation. 

 

Figure 1.16  Demands for column-to-pile cap and pile cap-to-pile connections 

Further than ensuring life safety, numerous efforts have been made to develop 

rocking piers for bridges. In addition to the pier column with internal unbonded prestressing 

tendons, bridge piers supported on shallow foundations would also mobilize rocking 

behavior at their footings, utilizing the weight of superstructures as the recentering force. The 

advantages of the rocking shallow foundation include sufficient recentering capacity, 

significant energy dissipation, well-defined moment capacity. However, this type of system 
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has relatively low bearing capacity, may experiences the residual settlement and rotation due 

to the permanent deformation of underlying soils, and is difficult to repair after an 

earthquake. In order to facilitate the uniform application of rocking systems, new structures 

with less concern regarding the soil conditions, improved reparability, and adequate energy 

dissipation are necessary. 

Research Summary 

Challenges to the incorporation of precast column bent pier with steel pile foundation 

include a lack of proper connections between precast components and an absence of research 

related to behavior of a soil-foundation-structure system, particularly under earthquake 

excitation. These issues have been addressed in the study presented in this dissertation. 

Following the comprehensive evaluation of many types of connecting methods that are 

potentially suitable for constructing precast column bent pier, the alternative connections 

were identified for study with the considerations of structural performance, constructability, 

and durability. Details of the proposed connection have been optimized through a series of 

experimental tests. A half-scaled test unit representing the precast column bent pier with steel 

H-pile foundation utilizing the proposed connection details has been subsequently tested 

under cyclic reversed loading at an outdoor test site in order to adequately account for the 

soil-foundation-structure interaction. To further understand soil-foundation interaction, the 

pile foundation in the test unit has been loaded alone to failure, and a nonlinear finite element 

model has been developed to simulate the system behavior of precast column bent piers with 

different pile foundation configurations. In the context of above described experimental and 

analytical works, the study presented in this dissertation will promote and advance the use of 

precast concrete for routine bridge construction, especially in seismic hazard zones. 
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This dissertation also presents a controlled rocking pile foundation (CRPF) system, 

which consists of the pile cap supported on the piles that are connected to the footing using 

the replaceable bar fuses. When subjected to strong earthquake ground motions, the system 

allows the pile cap rock on the pile foundation and dissipates seismic energy through the 

inelastic deformations of the fuses. Following the conceptual design of the CRPF system, an 

analytical model was developed for a bridge pier utilizing the CRPF system to investigate its 

seismic response. Another model was established for a pier designed to develop a plastic 

hinge in its column. Both the two models were subjected to the static cyclic loads, dynamic 

free vibrations, and earthquake ground motions, and their responses were compared. The 

results indicated the advantages of the CRPF system over conventional designed bridge piers. 

Dissertation Layout 

Following the introductory chapter, Chapter 2 reviews the literatures on the topics 

related to the study presented in this dissertation, such as policy and design for precast 

column bent pier, current state of the knowledge about connecting methods for precast 

components, design of steel pile foundation, rocking structures, and analysis techniques that 

have been used to analyze structure, in particular nonlinear pile response while satisfying 

simultaneously the appropriate nonlinear response of the soil. Chapters 3, 4, 5 and 6 are 

written as journal articles. Chapter 3 presents the experimental investigation of the proposed 

column-to-pile cap connections in sustaining axial load. The experimental test of a precast 

column bent pier with steel pile foundation for design validation and strength evaluation is 

presented in Chapter 4. Chapter 5 presents the pile foundation behavior under the 

combination of gravity and lateral loading. Chapter 6 details the development and numerical 

analysis of the CRPF system. Chapter 7 concludes the dissertation and provides a summary 

of the research results. 
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CHAPTER 2.    LITERATURE REVIEW 

Accelerated Bridge Construction (ABC) and Precast Elements 

Accelerated bridge construction (ABC) can be defined as bridge construction that 

uses innovative planning, design, materials, and construction methods in a safe and cost-

effective manner to reduce the onsite construction time that occurs when building new 

bridges or replacing and rehabilitating existing bridges (Culmo 2011). The successes of a 

number of projects in Iowa and other states prove that ABC techniques offer many 

advantages over traditional cast-in-place (CIP) bridge construction, which include, but are 

not limited to accelerated project delivery, improved construction quality, low life-cycle 

costs, minimal environmental impacts, improved work-zone safety, and reduced traffic 

disruptions. The available ABC methods are in two main categories: (1) offline construction 

that constructs the bridge away from the final location and then moves the completed bridge 

into place through self-propelled modular transporter (SPMT), lateral sliding, longitudinal 

launching, or a crane based system, and (2) online construction that constructs the bridge in 

its final location using prefabricated bridge elements and systems (PBES) (UDOT 2017). 

Among these methods, online construction using prefabricated elements is the most common 

strategy for implementing ABC. 

Prefabricated elements, especially precast concrete elements, have been an essential 

part of bridge construction for many years. Being constructed in a controlled environment, 

these elements normally achieve higher quality. The un-restrained condition during curing 

(i.e., no contact with previously cast concrete) reduces, and in most cases, eliminates 

shrinkage cracking, thereby minimizing long term deterioration of the concrete (Culmo 

2011). Given the considerations of transportation, fabrication, and construction, the height 
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and width of each precast element, including projecting reinforcing, are recommended to less 

than 3.0 m (10 ft) and 4.3 m (14 ft), respectively (UDOT 2017). In addition, the elements 

need to be sized based on the weight limits of the available equipment and the proposed 

shipping routes. Designers should carefully consider the constructability when using precast 

elements. Some effective methods to improve the constructability include providing 

repetitive and simple details, minimizing the number of connections, and providing as much 

tolerance in the system as possible. Based on the “emulating” principles, the design of 

individual elements can follow traditional LRFD design specifications as if they were 

constructed using CIP techniques. Precast elements can be used for all components in 

bridges. Due to the interests of this study, only precast frame piers will be discussed in the 

following section. 

Precast Bridge Pier 

Most bridge piers can be grouped into frame pier, T-pier, pile bent, or diaphragm pier, 

as shown in Figure 2.1 (Iowa DOT 2018). Among these pier configurations, frame pier is the 

usual selections for typical pretensioned prestressed concrete beam (PPCB) or continuous 

welded plate girder (CWPG). If a bridge is not required to be designed for vehicular collision 

force and ice load, the frame pier is preferred because of low construction cost (Iowa DOT 

2018). A frame pier typically consists of a bent cap, columns, and foundation under each 

column. In Iowa, considering site conditions and economy, it often is appropriate to use steel 

H-piles for pier foundation (Iowa DOT 2018). 
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(a) (b) 

  
(c) (d) 

Figure 2.1  Bridge piers: (a) frame pier, (b) T-pier, (c) pile bent, and (d) diaphragm pier 

Due to the difficulty of forming and pouring the bent cap and column in height, 

construction of a frame pier can be challenging. Using precast elements can eliminate the on-

site forming, and save significant time during construction. With precast technologies, a 

typical frame pier can be constructed in as little as two days once the footings are in place 

(Culmo 2011). Several state agencies have utilized precast elements in the construction of 

frame piers. The Iowa DOT has successfully accomplished the construction of the U.S. 6 

Bridge over Keg Creek with precast columns and precast bent caps (Figure 2.2). The Texas 

Department of Transportation (TxDOT) introduced precast reinforced bent caps in the 1990s, 

and has developed precast pretensioned bent cap designs in recent years. Full precast frame 

piers were constructed for Riverdale Road Bridge over I-84 in Utah. The Washington State 

DOT has successfully implemented precast columns and precast bent caps with CIP spread 

footings. To address the challenges from site constraints, precast elements can be used for the 
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construction of foundation. The New Hampshire DOT and the Utah DOT have developed the 

precast spread footings for bridge construction. However, none of the precast pier has been 

constructed on the pile foundation. 

  
(a) (b) 

Figure 2.2  Precast frame piers for (a) U.S. 6 Bridge over Keg Creek and (b) U.S. 12 Bridge 

over I-5 at Grand Mound 

Connections for Precast Bridge Piers 

The connections between precast elements are the most critical parts in ABC projects. 

These connections should not only be easy-to-construct, but they should also ensure 

structurally dependable performance. Most ABC projects are based on the concept of 

“emulation design”, which requires the precast connections to be designed and detailed to act 

as a cast-in-place construction joint. Another strategy for connecting precast elements is 

providing a connection with a strength lower than that of the adjacent components, while still 

ensuring sufficient energy dissipation and strength to maintain the integrity of the bridge. 

The successes in past projects (Culmo 2009) and extensive research projects (Marsh 

et al. 2011; Restrepo et al. 2011) showed the feasibility of adequately connecting precast bent 

caps and precast columns in bridge construction. A commercial grouted splice coupler is the 

most common connection method. Other methods, such as a bar coupler connection, grouted 
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duct connection, pocket connection, or hybrid connection with post-tension technology, are 

also practical selections. Aside from the connection between precast bent caps and precast 

columns, the column-to-footing connection is a critical element to successfully implement a 

precast frame pier. If the piles are used as the foundation, the pile cap-to-pile connection is 

required as well. The following sections describe the findings from the literatures and 

practices on the connections for precast column and pile. 

Column-to-Footing Connections 

Using the force transfer mechanism, the connections suitable for a precast column can 

be classified as bar coupler connection, grouted duct connection, socket connection, and 

jointed connection. 

Bar coupler connection 

A bar coupler works as a connection by splicing the reinforcing bars from column and 

footing. Several styles of couplers, as illustrated in Figure 2.3, are commercially available. 

Among these couplers, grouted splice sleeve and headed bar with mating sleeve are used for 

connecting a column and footing. Figure 2.4 shows the typical connection details using 

grouted splice sleeves (UDOT 2017). A grout bed using non-shrink grout is prepared before 

the column is placed. Reinforcing bars extending from the footing or the column are grouted 

into splice sleeves. Another type of bar coupler connection is shown in Figure 2.5 (Haber et 

al. 2014). Vertical reinforcing bars with headed ends project from the footing and the 

column. After placing the column on the footing, the link bars are connected by mating 

sleeves to the bars projecting from the column and footing. Spiral reinforcement is then put 

around the link bars, and the connection is completed by casting concrete around the splice 

region at the column base.  
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Figure 2.3  Types of bar couplers (Marsh et al. 2011) 

 

Figure 2.4  Connection details using grouted splices sleeves 

 

Figure 2.5  Column-to-footing connections with bar couplers 

For the bar coupler connections, the force transfer mechanism is straightforward, but 

the main challenges are cost, tolerance, and potential conjunction due to the larger diameter 
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of the couplers. Designers can mitigate the cost by minimizing the number of couplers 

through using large diameter reinforcing bars. Tolerance is a challenge because all projected 

bars must be aligned in the field. To help with this, template can be used to position the bars 

and couplers during fabrication of the column and footing. In order to reduce conjunction, it 

is preferred to embed the coupler into the footing and use larger bars to reduce the number of 

couplers required. The tests conducted with these connections (Haber et al. 2014) showed 

that the strain concentration occurred either above or below the couplers, depending on their 

locations. 

Grouted duct connection 

In a grouted duct connection, reinforcing bars projecting from one member are 

grouted into ducts that are cast into the adjacent member. The force is transferred from the 

reinforcing bars to the concrete surrounding the ducts. A small number of larger bars are 

typically used for easier alignment and less conjunction. Due to the length required to anchor 

the large bars, ducts are typically cast into the column, as illustrated in Figure 2.6a. Using 

ultra high performance concrete (UHPC) to fill the ducts instead of grout requires shorter 

length to fully anchor the reinforcing bars, such that the ducts can be placed in the footing as 

shown in Figure 2.6b. Several tests (Matsumoto 2009; Pang et al. 2010) have been conducted 

on this type of connection, and preliminary design guidelines can be found in PCI Design 

Handbook (2004). Similar to the bar coupler connection, the challenges associated with 

grouted ducts are tolerance and potential conjunction.  
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(a) (b) 

Figure 2.6  Column-to-footing connections with grouted ducts: (a) large bars with ducts Cast 

into column and (b) ducts placed in footing with UHPC infill 

Socket connection 

A socket connection for joining precast column and footing can be constructed using 

one of the following two methods: (1) cast a CIP footing around the column, and (2) insert 

the column into a preformed socket in a CIP or precast footing and secure the connection 

using a grout closure pour. The surface of the column can be roughened to improve the shear 

transfer between members. The preformed socket can be accomplished using commercially 

available corrugated steel pipe (CSP) due to its low cost and variability in sizes. In addition 

to serving as stay-in-place formwork, CSP offers confinement effects for the connections and 

its corrugations support a robust load transfer mechanism. The column reinforcing bars in 

socket connections are fully encased, and the sockets are preformed oversized, enabling 

generous tolerance to be accommodated. The Washington State Department of 

Transportation (WSDOT) has developed and successfully implemented the socket 

connection that was suitable for a precast column with CIP spread footing, as shown in 

Figure 2.7 (Haraldsson et al. 2013). The option with precast footing has been investigated as 

well. Motaref et al. (2011) and Kavianipour et al. (2013) tested a precast bridge pier, in 
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which the columns were embedded into the reserved socket in a precast footing with high-

strength grout infill (Figure 2.8a). The embedment length of the column in the footing socket 

was 1.5 times the column diameter. The authors reported that the embedment length was 

sufficient to develop full fixity at the column base. Mehrsoroush and Saiidi (2016) tested a 

pier model with precast columns and socket connections in the precast bent cap. In the 

model, the sockets were made using CSP and the column embedment length was 1.2 times 

the column diameter. Results showed that the configurations were adequate to develop 

moment connections and form plastic hinges in the columns. Another experimental studies 

(Mashal and Palermo 2015; Mohebbi et al. 2017) showed that the column embedment length 

can be shortened to 1.0 times the column diameter. As shown in Figure 2.8c, the socket on 

the precast footing was created by foam, and both the socket wall and base of the column 

were treated with exposed aggregate finish. The socket connection successfully formed the 

plastic hinges in the column with no damage to the footings. 

  
(a) (b) 

Figure 2.7  Socket connections with CIP footings: (a) test specimen and (b) implementation 

over I-5 in Washington State 
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(a) (b) 

 
(c) 

Figure 2.8  Socket connections with precast members: (a) Motaref et al. (2011), (b) 

Mehrsoroush and Saiidi (2016), and (c) Mashal and Palermo (2015) 

Jointed connection 

Jointed connections utilize unbonded post-tensioning tendon to connect a precast 

column with its footing. The post-tensioning tendon is designed to remain elastic for a drift at 

the design-level motion, allowing the column to re-center while not allowing the members to 

undergo plastic deformation. Keeping the tendon elastic provides very little energy 

dissipation capacity. Mild reinforcing bars or other innovative devices are installed for 

dissipating energy, and can be replaced after damage. Figure 2.9 illustrates examples of 

jointed connections utilizing unbonded post-tensioning. Note that these connections were 

experimental and have not been used on actual bridges. The challenges associated with a 
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jointed connection include cost, constructability, and durability. Also, this type of connection 

offers no advantage in non-seismic regions. 

  
(a) (b) 

 
(c) 

  
(d) 

Figure 2.9  Jointed connections: (a) Mashal and Palermo (2015), (b) Motaref et al. (2010), 

(c) Restrepo et al. (2011), and (d) Thonstad et al. (2016) 
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Pile Cap-to-Pile Connection 

Steel H-pile is a common foundation choice for bridges with frame piers. Pile 

foundations are normally capped with concrete footing in order to provide a stable platform 

to support the column. A pile group with a concrete cap is an indeterminate structure. In most 

cases (i.e., the piles are surrounded by competent soil), the lateral movement of the pile in a 

pile group with a concrete cap under lateral loads is very small. Therefore, moments in the 

pile-to-cap connection can be ignored. Even though the moment is often ignored in the 

design process, the experimental studies (Shama et al. 2002; Xiao et al. 2006) indicated that 

embedding the pile head into the cap, as it constructed in current practices, develops 

significant capacity to sustain a moment. 

Few attempts have been made to implement precast pile cap in bridge construction. 

Only conceptual details have been developed for the connection of precast pile caps to steel 

H-piles, and one of them is from the PCI Northeast Bridge Technical Committee (Culmo, 

2011). As shown in Figure 2.10a, leveling bolts are used in the corners of the precast cap to 

set grade, and concrete is poured through ports to fill the voids around the piles. Based on the 

research on precast abutment, another conceptual connection (Figure 2.10b) has been 

developed, similar to a socket connection, using CSP voids. The research findings showed 

that the connection with CSP can provide a large amount of strength to transfer the axial 

force of steel H-piles (Wipf et al., 2009). 
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(a) (b) 

Figure 2.10  (a) Concept from the PCI Northeast Bridge Technical Committee and (b) 

concept using socket connection 

Wyoming DOT developed and implemented a connection for connecting precast 

concrete pier caps to steel H-piles when constructing the bridge over Crow Creek. To 

establish the connection, steel plates with shear studs are cast at the pile locations in the 

bottom of the pier cap. In the field, after the cap is set, the steel H-piles are welded to the 

steel plates, as shown in Figure 2.11. 

 

Figure 2.11  Welded connection between precast cap and steel pile 
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Construction of Socket Connection 

Socket connection is an easy-to-construct detail. The socket on one member can be 

made using commercially available corrugated steel pipe (CSP). After inserting another 

member into the socket, the connection is secured by using a grout closure pour. The surface 

of the embedded member can be intentionally roughened to improve the force transfer 

between concrete and grout as they are cast separately. The following sections contain the 

information on the materials, the products, and the techniques that are required for 

establishing a structurally adequate and easy-to-construct socket connection. 

Corrugated Steel Pipe (CSP) 

Corrugated steel pipe (CSP) is an effective way to pre-form a socket in precast 

elements. In addition to serving as stay-in-place formwork, CSP offers a confinement effect 

for the connection and its corrugations provide a robust load transfer mechanism. Referring 

to the specifications for the culvert pipe (AASHTO 2017; UDOT 2017), the CSP used for 

creating socket shall meet the requirements of AASHTO M 218 (2016). Metallic coating is 

typically applied to improve the durability of CSP, but aluminum cladding is not allowed 

because aluminum is reactive with the surrounding concrete, leading to degradation of the 

connection over time (UDOT 2017). The seam types of standard CSP include annular 

corrugations with riveting or resistance spot welding and helical corrugations with lock seam 

or continuous welding. For establishing sockets, annular corrugations are preferred because 

any detail to convey water more efficiently is not recommended for structural applications 

(UDOT 2017). The corrugations of annular seams are 68-mm (2-2/3-in.) pitch by 13-mm 

(1/2-in.) depth and 76-mm (3-in.) pitch by 25-mm (1-in.) depth depending on CSP diameter. 

For the most common CSPs ranging from 305 mm to 2134 mm (12 in. to 84 in.), the 

corrugation pattern is 68 mm (2-2/3 in.) by 13 mm (1/2 in.), where 68 mm (2-2/3 in.) is 
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measured from crest to crest and 13 mm (1/2 in.) is from valley to crest. Commercially 

available CSPs have variability in sizes from 305 mm (12 in.) to 3658 mm (144 in.) 

measured on the inside crest of the corrugations. Designers should be aware of 

manufacturing tolerances when they choose the pipe to fit their projects. For the CSP used in 

bridge construction, the average inside diameter of the circular pipe shall not vary more than 

one percent or one-half inch, whichever is greater, from the nominal inside diameter 

(AASHTO 2016). 

Grout 

There are several different types of grouts. Among these grouts, cementitious grouts 

are inexpensive, generally easy to work with, and develop adequate strengths in reasonable 

time, making them suitable for bridge construction. These grouts are often pre-packaged and 

composed of hydraulic cement, fine aggregate and other ingredients. Most commercially 

available cementitious grout requires only the addition of water for use. The manufacturer 

may allow job site addition of specific amounts and types of aggregates for some uses. For 

securing socket connections, the grout is required to have the following desirable properties: 

fluid consistency, extended working time, high early strength, high strength, and non-shrink. 

The fluid consistency and extended working time provide the possibility to flow easily into 

tight clearance and large placements in bridge socket connections. High early strength (i.e., a 

compressive strength not less than 4000 psi at 1 day) allows the connections to gain strength 

quickly, such that the project can be completed in a short period. High strength of the grout 

ensures the strength of the finished connection. Ideally, non-shrink grout will not exhibit 

dimensional change in the plastic or hardened state. This property tends to reduce the crack 

that occurs at the interface between grout and precast elements and in grout itself, which 

improves the durability of connection. To recognize the suitable products, information of 
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cementitious grouts available in the market were scanned and sorted (Sritharan and Cheng, 

2016). After reviewing the technical datasheets and several trial mixes, Rapid Set® 

ULTRAFLOW® 4000/8, referred to as “Ultraflow”, is identified as one meeting the 

requirements for securing socket connection. This particular type is a fluid consistency, non-

shrink, precision grout that provides extended working time up to 30 min., but then gains 

strength quickly after an hour and hits 4000 psi in 8 hours. In addition, the Ultraflow grout 

reaches a specified 28 days compressive strength of 8500 psi at fluid consistency. Any other 

products that have the comparable properties can be used for socket connection as well. 

Concrete Surface Finishing Techniques 

In the socket connection, the surface of the embedded element is often intentionally 

roughened. Different practical methods can be used to achieve different degrees of 

roughness. Exposed aggregate finish is popular, and deeper texture with regularized patterns 

can also be created by form liners. Chemical formwork retarders are very effective in 

exposing coarse aggregate. The application of retarder to the formwork prior to casting the 

concrete delays the surface cement paste from hardening. After hardening of the concrete 

mass, the retarded outer layer can be removed by high-pressure water washing. Acid etching 

is another technique to expose aggregate on the concrete surface. Unlike retarders that are 

applied prior to casting concrete, acid etching dissolves the surface cement paste after 

concrete harden. Note that acid etching is only for light to medium exposures, while 

formwork retarder can provide deep exposure where the coarse aggregate becomes the major 

surface feature (PCI 2007). Hardening concrete can also be mechanically roughened with 

sandblasting or bush hammering to produce an exposed aggregate texture. These finishing 

techniques are more labor intensive, and may soften the exposed aggregate (PCI 2007). Form 

liners are made of wood, steel, elastomeric, plastic, or polystyrene. A variety of surface 
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textures can be achieved by casting against form liners that are incorporated in or attached to 

the surface of formwork. Form liners are most suitable for flat surfaces. 

Behavior of Piles Driven in Clay 

Driven piles are structural members used to transmit the load to the soil gradually. In 

most cases, the piles are installed in group and subjected to both the axial and lateral loads. 

Numerous studies have been conducted to investigate and predict the behavior of piles. The 

following discusses the present state of the art. 

Axial Capacity and Settlement of Driven Piles 

The axial resistance of a steel driven pile includes tip resistance, side resistance, and 

the effective weight of the pile, while pile weight is usually ignored in practices. Generally, 

the displacement need to mobilize the side resistance is less than that required to mobilize the 

tip resistance. However, for determining the axial pile capacity, practices commonly assume 

that both the pile toe and the shaft have moved sufficiently with respect to the adjacent soil to 

simultaneously develop the full tip and side resistance. The most used methods for 

calculating the axial capacity of steel driven piles include the α-method, the Nordlund 

method, and the API method (Hannigan et al. 2016). Other empirical methods and CPT-

based methods have also been developed (Jia 2018). 

Settlement accompanying with axial loads is another critical factor of the pile 

foundation behavior. Several empirical procedures are available for determining settlement 

of single pile and pile group (Ma and Deng 2014; Hannigan et al. 2016). As an alternative, 

the force-settlement behavior can be achieved through the method using localized springs, 

called t-z method (Kraft et al. 1981; Resse and O’Neil 1988). Figure 2.12 illustrates the 

model used in the t-z method. In this method, the load transfers in side resistance and tip 

resistance are represented by a series of localized springs along the pile (t-z curves) and a 
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spring at the bottom of the pile (Q-z curve), respectively. The t-z method thereby allows the 

assessment of the pile load-settlement behavior as well as the load distributions along the pile 

by solving the differential equation for the pile and soil using a finite difference approach. 

For the analyses under static loading, the behavior of these springs may vary from linearly 

elastic to nonlinear hysteretic, and the pile can be modeled as a continuous beam-column, 

either linear or nonlinear. 

 

Figure 2.12  Model used for t-z method 

API (2002) provides recommendations for generating static t-z curve and Q-z curve 

for driven piles. The typical t-z curves that API recommend are show in Figure 2.13. For 

driven piles in clay, value of the residual adhesion ratio (𝑡𝑚𝑎𝑥/𝑡𝑅𝐸𝑆) can range from 0.7 to 

0.9, which is a function of soil stress-strain behavior, stress history, pile installation method, 

pile load sequence and other factors. The maximum unit side resistance can be calculated 

from the following equation: 

 𝑡𝑚𝑎𝑥 = 𝛼𝑐𝑢 Equation 2-1 

where 𝛼 = dimensionless factor and 𝑐𝑢 = undrained shear strength of soil at calculation point. 

The dimensionless factor, 𝛼, is calculated from the following equation: 

 
𝛼 =

0.5𝜓−0.5   𝑓𝑜𝑟 𝜓 ≤ 1.0

0.5𝜓−0.25 𝑓𝑜𝑟 𝜓 > 1.0
 

 

Equation 2-2 
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where 𝜓 = 𝑐𝑢/𝑝0
′  and 𝑝0

′  = effective overburden pressure at the calculation point. 

 

Figure 2.13  Typical t-z curves 

Figure 2.14 shows the typical static Q-z curve for both sand and clay following the 

API approach (API 2002). The suggested maximum unit tip resistance, 𝑄𝑝, for clay is 

calculated from the following equation: 

 𝑄𝑝 = 9𝑐𝑢 Equation 2-3 

where 𝑐𝑢 = undrained shear strength of soil at the tip of the pile. 
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Figure 2.14  Typical Q-z curves 

Lateral Capacity and Deflection of Driven Pile 

The pile behavior under lateral loads depends on pile stiffness and strength, soil 

stiffness and strength, as well as pile head fixity. Numerous methods have been developed 

for analyzing laterally loaded piles. In the 1960s, Broms (1964a and 1964b) made the 

recommendations to estimate the ultimate lateral capacity of a pile, which is based on the 

assumption that the pile is short and rigid. Some researches implement three-dimensional, 

nonlinear finite elements to account soil-pile interaction in a fully-coupled manner. The most 

commonly used method is the p-y method, in which soil is not continuum but be represented 

as a series of localized nonlinear springs (p-y curves) along the pile (Figure 2.15). To 

recognize the nonlinear response characteristics of pile, nonlinear beam-column elements can 

be used for modeling the piles. By solving the differential equations describing the behavior 

of the beam-column with nonlinear supports (Hetenyi, 1946), p-y method provides 

deflection, bending moment, shear force, and soil response over the length of the lateral 

loaded piles. 
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Figure 2.15  Model used for p-y method 

Proper p-y curves are essential to obtain the acceptable results from the p-y method. 

Ideally, p-y curves should be generated from full-scale lateral load tests on instrumented test 

piles. In the absence of experimentally data, it is possible to use empirical p-y formulations 

that have been proposed in the literature for different types of soils. For driven pile in clay, 

the recommended characteristic shape and formulations of p-y curves are shown in Figure 

2.16. 

   
(a) (b) (c) 

Figure 2.16  Characteristic shape of p-y curves for static loading in (a) soft clay (Matlock 

1970), (b) stiff clay with free water (Resse et al. 1975), and (c) stiff clay without free water 

(Resse and Wlech 1975) 

The p-y formulations are originally developed for circular pile and thus as a function 

of the diameter. The analytical studies (Ashour and Norris 2000; Resse and Van Impe, 2011) 

indicated that, for two piles have the same width perpendicular to the lateral load but 
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different shapes (i.e. circular and square), the square pile would induce a soil resistance 

higher than the circular pile because shear stresses could act on the sides of square section 

paralleling to the lateral load. To formulate the p-y curves for noncircular piles, the following 

equation can be used to solve for the equivalent diameter, 𝐷𝑒, of a rectangular section (Resse 

and Van Impe, 2011): 

 

𝐷𝑒 = 𝑤 [
𝑝𝑢𝑐 + 2(𝑑 −

𝑤
2)𝑓𝑧

𝑝𝑢𝑐
] 

 

Equation 2-4 

where 𝑤 = width of the noncircular section, 𝑑 = depth of the noncircular section, 𝑝𝑢𝑐 = 

ultimate resistance of a circular section with a diameter equal to 𝑤, and 𝑓𝑧 = shear resistance 

along the sides of the rectangular shape at the depth 𝑧 below the ground. 

For the undrained strength approach for cohesive soils, the shearing resistance may be 

computed with the following equation: 

 𝑓𝑧 = 𝛼𝑐𝑢 with 0.5 ≤ α ≤ 1 Equation 2-5 

where 𝛼 = shear strength reduction factor, which can be taken as 1 for steel H-pile loaded in 

strong axis and 𝑐𝑢 = soil undrained shear strength. 

The equivalent diameter, as computed by the above equations, will vary with the 

depth being selected. An average value of the equivalent diameters at a few depths can be 

used in making a solution. 

Effects of Cyclic Loadings 

The influence of cyclic loads is a function of magnitudes, cycles, and rate of loading, 

pile structural characteristics, and soil characteristics (API 2002). Repetitive axial loadings 

would cause a decrease in load-carrying resistance and an accumulation of settlement. 
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However, if the ratio of cyclic axial load amplitude to static axial pile capacity is below a 

threshold value, no axial pile capacity reduction needs to be considered. The threshold 

values, which is referred to as the critical level of repeated loading (CLRL), are ranged from 

0.35 to 0.55 for normally consolidated clay, but from 0.85 to 1.0 for over-consolidated clay 

(Schwarz, 2002). 

Cyclic lateral loads result in the loss of soil resistance as illustrated in Figure 2.17. 

For piles driven in clay with the presence of free water, the cyclic loading effect can be 

severe because of the subjection of the clay to repeated strains of large magnitude (Long, 

1984), and scour from the enforced flow of water near the pile when water is above the 

ground surface (Reese et al. 1975; O’Neill and Dunnavant, 1984). 

 

Figure 2.17  p-y curves developed from static and cyclic load tests on pipe piles in 

submerged stiff clay (Resse et al., 1975) 

Effects of Pile Batter 

Piles are sometimes driven on an intentional inclination, giving them a greater 

capacity and smaller deflection when subject to lateral loads. To account these effects in the 

p-y method, the foundational formulations for p-y curves need to be modified. The factor on 
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the ultimate soil resistance at the front of the pile where the pile is installed at an angle 𝜃 with 

the vertical was derived by Reese (1958) and is shown in following: 

 
𝑘𝑓 =

1

1 + 𝑡𝑎𝑛𝜃
 

 

Equation 2-6 

The factor on the soil resistance at the back of the pile following Reese approach is: 

 
𝑘𝑏 =

𝑐𝑜𝑠𝜃

√2cos (45° + 𝜃)
 

 

Equation 2-7 

The values of the soil resistance modifying factor as the batter angle were deduced 

from the results of the model tests (Awoskika and Reese 1971) and from results of full-scale 

tests (Kubo 1964). As shown in Figure 2.18, the agreement between the empirical curve 

following Reese approach and the experiments is generally achieved. 

 

Figure 2.18  Soil resistance factor for p-y curves for battered piles 

Group Effect 

In most cases, piles are constructed in group to transmit the structural load to the soil. 

Although a pile group is composed of a number of individual piles, the resistance of a pile 

group is not always equivalent to the sum of all the piles as if they are individual piles. The 

pile group can produce greater moment resisting capacity because piles would form force 
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couples resulting from their axial resistances through the action of the pile cap. However, the 

capacity to withstand axial and lateral loads for a group of piles is often less than the sum of 

individual piles because of the interaction between piles. The amount of reduction depends 

on many factors such as the spacing between the piles, the deflection of the piles, and the 

type of soil. The interaction piles usually diminish for piles spaced at approximately 7-8 pile 

diameters (Ma and Deng 2014). 

When the piles are clustered, the stresses transmitted by the piles to soil may overlap 

(Figure 2.19a), reducing the axial capacity of the piles. One way to account for the 

interaction between piles under axial load is to use the group efficiency factor, which is 

defined as the ratio of the axial capacity of a pile group to the sum of the axial capacity of all 

the individual piles. For pile group driven in stiff clay, the pile efficiency factor of 1.0 may 

be used (Hannigan et al., 2016). For pile group in soft to medium stiff clay, the group 

efficiency factor is usually less than 1.0, and the pile group under axial load tends to behave 

like a block (Figure 2.19b). 

  
(a) (b) 

Figure 2.19  (a) Overlap of stress zones for pile group under axial load and (b) block failure 

model for pile group 
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Under lateral load, as the piles are installed close to each other, the stressed zones of 

the piles in a pile group can overlap each other as shown in Figure 2.20 (Brown et al. 1988; 

Poulos, 1971; Rollins et al. 2006). This effect by far is not well defined. Generally, it is 

believed that the group effect depends on from a number of factors such as pile spacing, row 

position in the group, and soil type. The limited full scale load tests show the distribution of 

the load within a pile group (Meimon et al. 1986; Brown et al. 1987; Brown et al. 1988; 

Rollins et al. 1998; Christensen, 2006). In all of these tests, under a certain lateral load acting 

on the pile cap, the piles in the leading row exhibited the higher resistance than the piles in 

the subsequent rows, but individually these piles have lower resistances than a single pile. 

Another study (Ashour and Ardalan, 2011) demonstrated that the group effect develops from 

nothing where small deflections are present, and increases gradually with the deflection. 

When the laterally loaded piles are analyzed using the p-y method, the most common 

approach to incorporate the group effect is using a p-multiplier to adjust the single pile p-y 

curve, as suggested by Brown et al. (1988). With this approach, the soil resistance is scaled 

down by a constant factor (Figure 2.21). The p-multipliers for driven piles in clay back-

calculated from selected pile group load tests and the default values used in a widely used 

analysis software are summarized in Table 2.1. In another approach, rather than defining p-

multipliers for single pile p-y curve, an average p-multiplier for all piles in the group is used 

(Brown et al. 2001). Use of an average p-multiplier is justified for the cyclic reversed loads, 

converting leading rows of piles instantaneously into trailing rows. 
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Figure 2.20  Overlap of stress zones for pile group under lateral load 

 

Figure 2.21  Constant p-multiplier for single pile p-y curve 

Table 2.1  P-multiplier values 

Reference 
Soil 

properties 

Pile spacing 

(/pile 

diameter) 

1st row 2nd row 3rd row 

4th row 

(5th 

row) 

Cox et al. (1984) soft clay 3 0.95 0.75 0.77 
0.73 

(0.72) 

Meimon et al. (1986) silty clay 3 0.9 0.5   

Brown et al. (1987) stiff clay 3 0.7 0.5 0.4  

Rollins et al. (1998) clayey silt 3 0.6 0.4 0.4  

Wilmington load test 

(Brown et al. 2001) 
soft clay 3 0.8 0.4 0.2 0.3 

Spring Villa load test 

(Brown et al. 2001) 
silty clay 3 0.64 0.32 0.16 0.24 

Rollins et al. (2006) stiff clay 3.3 0.82 0.61 0.45 

0.45 

(0.51-

0.46) 

Cox et al. (1984) soft clay 4 0.96 0.86 0.85  

Spring Villa load test 

(Brown et al. 2001) 
silty clay 4 0.72 0.5 0.4  

Rollins et al. (2006) stiff clay 4.4 0.9 0.88 0.69  

Rollins et al. (2006) stiff clay 5.65 0.95 0.88 0.77  

Cox et al. (1984) soft clay 6 1.01 0.92 0.92  

FB-MultiPier  3 0.8 0.4 0.3 0.3 

FB-MultiPier  5 1.0 0.85 0.7 0.7 
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Rocking Bridge Pier 

Structures with rocking mechanism offer the potentials to achieve the desired seismic 

performance objectives such as mitigating economic losses, maintaining bridge functionality, 

and improving reparability. Numerous studies have been conducted to develop rocking 

structures for bridges, including the columns with internal posttensioning tendons designed to 

rock at their ends, shallow foundations that are free to uplift, and rocking pile cap supported 

on pile foundation. Representative works are reviewed and summarized in the following 

sections. 

Rocking Precast Column with Internal Prestressing Tendons 

The rocking column utilizes unbonded prestressing tendons passing through the 

center of the column to provide recentering force. Hewes and Priestley (2002) tested two 

columns with a high aspect ratio and two columns with a low aspect ratio under cyclic lateral 

loading. As illustrated in Figure 2.22, each column was constructed with precast segments 

and the vertical posttensioned prestressing tendons passing through ducts located in the 

precast segments. Steel jackets were used to confine the end region of each column. All four 

column underwent large nonlinear displacements up to a drift ratio of 4% without 

experiencing significant strength degradation. Because of the restoring force provided by the 

prestressing tendons, the residual drift was minimal. Wang et al. (2008) extended the 

concepts of precast segmental construction and added bonded mild steel bars across the 

segment joints to increase the hysteretic energy dissipation capacity for the rocking column 

(Figure 2.23). The four large-scale column specimens showed ductile behavior and 

satisfactory hysteretic energy dissipation capacity under cyclic lateral loading. Ou et al. 

(2010) demonstrated that using high performance steel reinforcing bars as the energy 

dissipation components would achieve greater drift capacity, higher lateral strength, and 



www.manaraa.com

46 

larger energy dissipation. To improve the reparability of the rocking pier, Mashal and 

Palermo (2019) tested the precast column with unbonded posttensioning tendons and the 

externally attached metallic dissipaters, as shown in Figure 2.24. Following many cycles of 

large drift ratios, there was no damage or residual displacement in the test unit.  

 

Figure 2.22  Segmental column with prestressing tendons (Hewes and Priestley 2002) 

 

Figure 2.23  Rocking column with internal energy dissipation bars (Wang et al. 2008) 
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Figure 2.24  Externally attached metallic dissipaters (Mashal and Palermo 2019) 

Rocking Shallow Foundation 

Utilizing the structural self-weight as the recentering force, bridges with shallow 

foundation would mobilize rocking behavior at their footings. Espinoza and Mahin (2008) 

conducted a series of shaking table tests on a single column bridge column supported on the 

shallow foundation. For these tests, the underlying soil was modeled by a neoprene pad. 

Antonellis et al. (2015) tested the rocking shallow foundation placed inside a sand box using 

the large outdoor shake table. These test indicated that the rocking shallow foundation would 

reach a great peak drift ratio but exhibit minimal residual drift ratios. 

 

Figure 2.25  Setup of shaking table test on rocking shallow foundation (Antonellis et al. 

2015) 
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Rocking Pile Foundation 

Although the benefits of rocking shallow foundations have been widely explored, 

some hurdles impeding the use of this type of system still exist, such as relatively low 

bearing capacity, the potential settlement and residual rotation due to the permanent 

deformation of underlying soils, and the difficulty to repair after an earthquake. Addressing 

these issues, rocking pile foundation was developed. Allmond and Kutter (2012; 2013) 

conducted centrifuge tests to explore the behavior of the rocking foundation on unattached 

piles with different footing-pile connection details (Figure 2.26). These tests demonstrated 

the well performance of the rocking pile foundation during an intense shaking, even in poor 

soil conditions. Guan et al. (2018) tested two large-scale pile foundation models with a 

rocking pile foundation and a conventional foundation. Compared to the conventional 

foundation, the rocking pile foundation resulted in less damage in the piles and minimal 

residual drift, evidencing the feasibility of rocking pile foundation. 

 

Figure 2.26  Different footing-pile connection details (Allmond and Kutter 2012) 
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Figure 2.27  Connection details for pile-to-pile cap connection (Guan et al. 2018) 
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Abstract 

Use of precast substructure in Accelerated Bridge Construction (ABC) has been 

gaining popularity due to its advantages over traditional cast-in-place (CIP) construction. 

When using vertical precast members (e.g., columns and piles) in bridge substructure 

construction, they must be connected to the adjoining members (e.g., bent cap, pile cap, and 

abutment) reliably. To accomplish this goal and promote ease of construction, the preformed 

socket connection has been suggested. This connection is established by inserting the vertical 

precast member inside a preformed socket in the precast adjoining member and filling the 

socket with non-shrink, high-strength grout. Using specimens that modeled the full-scaled 

connection interfaces, this paper experimentally evaluates the side shear strength of 

preformed socket connections with various connection parameters. Test results show that 

side shear mechanism in the preformed socket connections can provide significant resistance, 

facilitating transfer of large vertical loads. This paper also includes recommendations for the 

socket connections and appropriate stress limits. 

mailto:sri@iastate.edu


www.manaraa.com

56 

Keywords: Accelerated bridge construction; Socket connection; Precast; Vertical member; 

Pile; Column; Design; Testing. 

Introduction 

Accelerated bridge construction (ABC) uses innovative techniques to complete bridge 

projects in a timely and cost-effective manner. Besides reducing mobility impacts, a number 

of successful projects have demonstrated that ABC can improve quality of construction, 

reduce onsite construction, and minimize environmental impacts. Use of Prefabricated 

Bridge Elements and Systems (PBES) in construction is a common strategy adopted in ABC. 

Although PBSE has been used in bridge superstructure construction for decades, their use in 

substructures have been very limited. In recent projects, the Department of Transportations in 

various states have utilized precast components in the construction of bridge substructures 

(e.g., bent cap, abutment, pile cap, column, and pile). Use of precast components in 

substructure is attractive because they can eliminate on-site forming and casting while 

overcoming challenges associated with the site constraints. When using vertical precast 

members, they need to be designed with reliable connections to the adjoining members (e.g., 

column-to-bent cap, column-to-pile cap, pile-to-pile cap, and pile-to-abutment connections). 

These connections should not only be easy to construct, but also produce dependable 

structural performance when subjected to the expected serviceability and ultimate loads. 

Commercially available grouted splice couplers have been used to establish the 

connection between precast columns and adjoining elements. Other techniques, involving 

mechanical bar couplers, grouted ducts, a pocket for embedding reinforcing bars extended 

from precast member, and a socket for embedding the end of a precast member, and 

unbonded prestressing tendon, have also shown to be practical either through laboratory 

evaluation or field applications (Marsh et al. 2011; Culmo 2009). The focus of this study is 
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on socket connections due to the ease of construction and the ability to provide relatively 

large installation tolerances, with emphasis on transferring high vertical loads through the 

connection. 

Socket connections for vertical precast members can be constructed using two 

options: (1) cast adjoining member around the end of the vertical member, or (2) insert the 

end of vertical member into the preformed socket in the adjoining member and secure the 

socket using grout closure pour. For the second approach, the preformed socket in the 

adjoining member can be accomplished using commercially available corrugated steel pipe 

(CSP) due to its low cost and ready availability in different sizes. In addition to serving as 

stay-in-place formwork, CSP offers confinement effect to the connection material while its 

corrugations provide a robust load transfer mechanism (UDOT 2017). The preformed socket, 

which promotes the use of prefabricated elements for the adjoining members, can be 

constructed with full or partial penetration (Figure 3.1a). With any construction option, when 

the vertical precast member is subjected to the design loads, the socket connection should 

facilitate the transfer of the loads without sustaining any significant sliding. As illustrated in 

Figure 3.1, the axial strength of fully penetrated connection depends only on the side shear 

resistance acting along the embedded portion of the vertical member. For a partially 

penetrated connection (Figure 3.1b), the axial load resistance can be provided by side shear 

and tipping at the end of vertical member. While relying on both side shear and tipping can 

be attractive to reduce the required embedment length of the vertical member, this option is 

not favored herein. This is because the design of such a connection is more challenging due 

to: (a) the side shear and tipping mechanisms being unlikely to be active simultaneously; and 

(b) sustaining a tipping mechanism would require design to prevent punching failure caused 
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by the precast vertical member. Given that sufficient axial resistance can be developed over a 

short embedment length, it is suggested that both fully and partially penetrated connections 

be designed relying only on side shear. 

 
(a) (b) 

Figure 3.1  Axial strength of (a) a fully penetrated socket connection and (b) a partially 

penetrated socket connection 

The side shear strength in a socket connection depends on how the connection is 

established. The connections with cast-in-place adjoining members exhibited high side shear 

strength in an experimental study. Haraldsson et al. (2013), who tested the connections 

constructed by casting spread footings around precast columns. The specimen with an 

intentionally roughened column surface and a column embedment length of 1.1 times the 

column diameter of 508-mm (20-in.) subjected to the high axial load. The corresponding 

axial load ratio was 58% based on the specified properties, but the connection was not failed 

using a high axial load ratio.  

Several experimental studies have also utilized preformed sockets connections for 

seismic bridge columns, which were designed to form plastic hinges at the member ends, 

thereby contributing to energy dissipation under seismic load. To ensure sufficient column 

ductility, seismic columns are typically designed with a low axial load ratio (e.g., 5 to 10%). 
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Motaref et al. (2011) and Kavianipour et al. (2013), who tested bridge piers with socket 

connections between a precast column and the precast footing with an embedment length of 

1.5 times the column diameter of 370-mm (14.57-in.). The tests showed successful 

development of plastic hinges with an axial load ratio of 6.3% and 8.8%, respectively. 

Mehrsoroush and Saiidi (2016) tested a scaled bridge pier having preformed socket 

connections in a bent cap. The corrugated steel pipes (CSPs) were used to create the sockets 

and the column embedment length was 1.2 times column diameter of 508-mm (20-in.). This 

test, which induced a maximum axial load ratio of 5.6%, also showed that the column 

embedment length into the socket was adequate to fully develop the column plastic hinge. 

Mohebbi et al. (2017) performed an experimental test on a preformed socket connection with 

a square column. In this test, with an axial load ratio of 14.4%, the column embedment length 

of only 1.0 times the column side dimension of 356-mm (14-in.) was used and a full column 

plastic hinge was successfully formed.  

In all of the aforementioned studies with a relatively low axial load ratio, the 

preformed socket connection remained essentially undamaged while the plastic hinge formed 

in the column just outside the connection. However, these results cannot be applicable to 

vertical members subjected to high axial load ratios. Precast piles in seismic and non-seismic 

regions can be designed to sustain as much as 40% of the axial load capacity while bridge 

columns in non-seismic regions can be subjected to 25 to 30% of the axial load capacity. In 

addition, for preformed socket connections that are established using CSP and grout closure 

pour, no guideline is available to help determining the key connection parameters and side 

shear strength for design due to lack of investigation that examined the failure modes of 

socket connections. To address this knowledge gap, an experimental study was conducted to 
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investigate the failure modes of side shear mechanism in preformed socket connections so 

that the suitable vertical precast members can be designed to transfer large axial load through 

socket connections. This paper presents the description of the experimental program, test 

results, and recommendations established from this study. 

Parameters Affecting Side Shear Strength 

When a preformed socket is established using CSP and the connection is established 

using grout, the side shear strength will depend on a number of interface parameters. The 

parameters that most influence the strength include: (1) corrugation pattern of CSP, (2) 

surface texture along the embedded length of the precast member, (3) clearance between CSP 

and the embedded member, and (4) the strength and type of grout used for closure pour. 

More details about each parameter are presented below. 

1. A key feature of CSP is its corrugation, which provides additional load transfer 

capacity. The corrugation types of standard CSPs include annular corrugation and 

helical corrugation. To make structural connections with CSP, UDOT (2017) 

recommends annular corrugation over helical corrugation, because helical 

corrugation is made to intentionally reduce the roughness to improve flow of 

substance through the pipe. The corrugation pattern in commercially available 

CSP varies with the pipe size. A pattern with 68-mm (2.67-in.) pitch and 13-mm 

(0.50-in.) depth is standard for CSPs with inside diameters ranging from 0.30-m 

(1-ft) to 2.13-m (7-ft), which are suitable for ABC applications. 

2. Bond strength between the grout closure pour and the embedded member is 

another important property as shear sliding failure can trigger at the interface 

between them. The primary variable that controls the bond strength is surface 

texture of the embedded member. Smooth surface with no treatment will have 
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lower bond strength, increasing the likelihood of shear sliding at this interface. To 

ensure adequate shear transfer, AASHTO (2017) suggests intentionally 

roughening the surface of embedded member to an amplitude of approximately 6-

mm (0.25-in.). Exposed aggregate finish is a popular texture for achieving the 

desired degree of roughness; regularized patterns with deeper amplitude (e.g., 

fluted fins and saw-tooth pattern) have also been commonly used. Different 

practical methods such as chemical formwork retarder, sandblasting, and bush 

hammering can be used to expose coarse aggregate. Note that the mechanical 

methods (i.e., sandblasting and bush hammering) may soften the exposed 

aggregate (PCI 2007), which will degrade the bond strength at the interface. The 

regularized patterns can be achieved by casting concrete against formliners that 

are attached to the inside surface of the formwork. 

3. The preformed socket connection is secured by filling the clearance between the 

CSP and embedded member with grout. The thickness of grout closure pour that 

corresponds to CSP-to-embedded member clearance may affect the transfer of 

side shear. Sufficient clearance must be provided to conduct grout closure pour 

and to account for the cumulative effects of all allowed tolerances. For inserting a 

vertical precast member, a minimum clearance of 25-mm (1-in.) is required 

around the perimeter between the embedded member and the socket (PCI 2000). 

This clearance is also controlled by the available sizes of CSP. Considering the 

available formwork and the weight limits for transportation, the diameter or side 

dimension of most bridge vertical precast members are fabricated at 0.15-m (0.5-

ft) intervals of up to 1.22-m (4-ft). Table 3.1 presents the inside diameters of the 
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appropriate commercially available CSPs and the resultant CSP-to- embedded 

member clearances expected for the bridge precast columns and piles. Note that 

the clearance herein represents the minimum distance between the crest of inside 

corrugation of the CSP and the most outer surface of the embedded member. As 

can be seen in the table, the clearances of 38-mm (1.5-in.) and 76-mm (3-in.) are 

two likely construction clearances in the preformed socket connections for bridge 

vertical members. 

Table 3.1  CSP-to-embedded member clearances for vertical precast members  

Diameter of vertical member 

(m) 

Inside diameter of CSP 

(m) 

Resultant clearance 

(mm) 

0.30 0.38 38 

0.46 0.53 38 

0.61 0.69 38 

0.76 0.91 76 

0.91 1.07 76 

1.07 1.22 76 

1.22 1.37 76 

 

4. For the purpose of establishing a strong socket connection, high-strength grout 

with the minimum compressive strength of 55.2-MPa (8000-psi) is preferred 

because the concrete strength of the precast member may be in the range of 34.5 

to 48.3-MPa (5000 to 7000-psi). Other desirable properties, such as high-early-

strength, fluid consistency, extended working time, and non-shrink, are also 

required to properly secure the socket connection. High-early-strength (i.e., a 

compressive strength not less than 27.6-MPa [4000-psi] at 1 day) would facilitate 

the connection to gain strength quickly, such that curing of grout will not cause 

any construction delays. The extended working time and fluid consistency 

provide the possibility to complete large grout pour into tight clearance between 
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the CSP and the embedded member. Non-shrink feature of the grout will 

minimize formation of cracks at the interfaces or within the grout itself, which are 

important for durability of the connection. A scanning of commercial available 

cementitious grouts has been conducted, and the findings indicated that only 

limited type of grouts meet all the preceding requirements (Sritharan and Cheng 

2016). 

Based on the above descriptions, it is apparent that once a specific grout meeting the 

desirable characteristics and commercially available standard CSPs are chosen, the side shear 

strength of a preformed socket connection will be determined by the surface texture of the 

embedded member and CSP-to-embedded member clearance. Therefore, the experimental 

investigation was conducted with these two variables. 

Experimental Program 

Testing Matrix 

A total of eight specimens were constructed to evaluate the side shear strength in 

preformed socket connection with different surface texture for the embedded portion of the 

vertical member and CSP-to-embedded member clearance, as detailed in Table 3.2. Three 

types of surface textures, including exposed aggregate finish, 13-mm (0.5-in.) deep fluted 

fins, 19-mm (0.75-in.) deep fluted fins, were tested as they are likely to be used for vertical 

precast members. For the fluted fin patterns, the fins are routinely made in trapezoid shape, 

and the fin-to-fin pitches of 38-mm (1.5-in.) and 51-mm (2-in.) are standard for the 13-mm 

(0.5-in.) and 19-mm (0.75-in.) fin depths, respectively. As a reference unit, a smooth surface 

specimen was also tested. Two CSP-to-embedded member clearance of 38-mm (1.5-in.) and 

76-mm (3-in.) were chosen to be tested. To investigate the influence of loading type, the first 
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four specimens were tested using monotonic loading, whereas the remaining four were 

subjected to cyclic loading. 

Table 3.2  Testing matrix 

Test specimen Surface texture 
CSP-to-embedded 

member clearance (mm) 
Loading type 

F1G1M 13-mm fluted fin 38 monotonic 

F2G1M 19-mm fluted fin 38 monotonic 

EG1M exposed aggregate 38 monotonic 

F2G2M 19-mm fluted fin 76 monotonic 

EG1C exposed aggregate 38 cyclic 

F1G1C 13-mm fluted fin 38 cyclic 

SG1C Smooth 38 cyclic 

F1G2C 13-mm fluted fin 76 cyclic 

 

Details of Test Specimens 

The test specimens were designed to reproduce the interface as expected in full-sized 

preformed socket connections, but the area of the interface region was reduced by utilizing 

the small-sized embedded members to keep the applied vertical load to be less than 1779-kN 

(400-kips). Each test specimen consisted of a short precast column segment that was 

embedded in a preformed socket on a precast foundation representing the adjoining member, 

as shown in Figure 3.2a. When a compressive force is applied to the top of the column 

segment, the side shear acting on the connection interface produced the resistance. Hence, the 

side shear strength could be evaluated by loading the column segment until it experiences a 

sliding failure with respect to the foundation. An oversized cavity, as illustrated in Figure 

3.2b, was formed under the socket in each foundation to allow the column segment to be 

pushed out freely when the side shear mechanism fails. The reinforcement of the specimens 

is shown in Figure 3.2c. The concrete strength of the column segments and the foundations 

were kept to that expected for precast products. The measured 28-day compressive strength 

of these members was 36.97-MPa (5362 psi), following the ASTM C39 (2017). 
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During construction of the precast column segments, the surface textures were formed 

as they are on full-sized precast members. The exposed aggregate finish was achieved by 

applying chemical retarder to the formwork prior to casting the concrete, followed by power-

washing the laitance after hardening of the concrete mass. The fluted fines were created by 

casting concrete against the polystyrene formliners that were installed inside the formwork. 

For obtaining the smooth surface, the formwork was used without any treatment. The 

completed surface textures are shown in Figure 3.2d. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3.2  Details of specimens: (a) key dimensions; (b) oversized cavity; (c) reinforcement 

detail; (d) surface textures of precast column segments 
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The socket connection length was chosen to be 229-mm (9-in.), which was equal to 

the outer dimeter of the column segment. After temporarily supporting the column segments 

in the sockets that was preformed using CSPs, the connections were established by placing 

grout in the gaps between CSP and the column segments. The 0.30-m (12-in.) and 0.38-m 

(15-in.) diameter CSPs with standard corrugation pattern of 68-mm by 13-mm (2.67-in. by 

0.50-in.) were used. These CSPs reserved 38-mm (1.5-in.) and 76-mm (3-in.) clearances, 

respectively, which are two clearances in expected between substructure vertical members 

and preformed socket connections at full scale. Referring to the specifications for the culvert 

pipe (AASHTO 2017), the CSPs used for creating preformed sockets met the requirements of 

AASHTO M 218 (2016). The thickness of CSPs was selected to be 1.63-mm (16 gage), 

which corresponds to the thickest standard CSP and thus is most likely to be used in practice. 

Having considered different grouts, one was chosen for securing connections in this study. 

The selected grout has a specified compressive strength of 27.58-MPa (4000-psi) in 8 hours 

and a specified compressive strength of 58.61-MPa (8500-psi) at 28 days. It also met the 

other requirements for closure pour such as fluid consistency, extended working time, and 

non-shrink characteristic. To prevent the column segments above the foundation from 

experiencing damage due to high axial compression, they were confined by steel tubes. A 51-

mm (2-in.) gap was left between the steel tube and the top of foundation so that the tube will 

not establish any contact with the top of the foundation block during testing. This approach 

allowed the axial loads on the column segments to be increased, forcing failure in the 

connection. 

Test Setup and Load Protocol 

Figure 3.3a shows the test setup that was used for the experimental investigation. The 

specimen was supported on two base blocks in order to access the bottom of the column 
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segment for instrumentation purpose. Using a hydraulic jack that was powered by an electric 

hydraulic pump, vertical downward forces were applied on the top of the column segment. 

A load cell was placed between the jack and the column segment for measuring the 

applied force. As shown in Figure 3.3b, three sets of the displacement transducers were 

mounted around the column segment. In each set, the transducers were positioned between 

the column segment and the foundation to monitor the movement of the column segment and 

grout with respect to the foundation. In this regard, the relative displacement between the 

column segment and the foundation (CF displacement), the relative displacement between 

the column segment and the grout closure pour (CG displacement), and the relative 

displacement between the grout closure pour and the foundation (GF displacement) were 

quantified. Note that, for the specimens with 76-mm (3-in.) CSP-to-column segment 

clearance, two transducers were mounted to measure the vertical deformation of grout 

(Δgrout). In addition to external instrumentations, the strain gauges were mounted along one 

longitudinal reinforcing bar in each embedded column segment for capturing force transfer in 

the connection region. 

  
(a) (b) 

Figure 3.3  Test setup: (a) loading device; (b) instrumentations 
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The specimens were tested by applying uniaxial compression force to the top of the 

column segment. For the specimen F1G1M, F2G1M, EG1M, and F2G2M, the loads were 

applied in a monotonically increasing manner. After the column segment began to slide with 

respect to the foundation, the displacement was used to control the test until the measured 

relative vertical displacement between the column segment and the foundation reached a 

value of at least 5.0-mm (0.195-in.). The remaining four specimens were subjected to a cyclic 

loading sequence consisted of a force-controlled phase and a displacement-controlled phase. 

The force-controlled phase was used until it reached 1068-kN (240-kips) at a load step of 

178-kN (40-kips). In the displacement-controlled phase, the measured relative displacement 

between the column segment and the foundation was used as the controlling parameter. The 

target displacements for this phase were multiples of the relative displacement obtained for 

the last force-controlled load step. Due to a defect in the load control device, the applied 

displacements did not exactly reach the targeted values. In cyclic loading sequence, each load 

step was followed by unloading from a compression to zero force, and reapplying the same 

displacement two more times. 

Experimental Results 

During the tests, each specimen began to resist loads in an elastic manner, reached its 

maximum resistance with some nonlinearity associated with its response, and then exhibited 

considerable ductility beyond the peak strength. Following the peak strength, some softening 

in the response was observed.  

Failure Modes 

Regardless of whether monotonic or cyclic was used, the specimens exhibited two 

failure modes as shown in Figure 3.4. For the specimens with smooth surface and those with 

texture of 19-mm (0.75- in.) fluted fins, the sliding failure occurred at the column segment-
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to-grout interface, whereas the sliding eventually occurred at the CSP-to-foundation interface 

for the specimens with exposed aggregate finish and 13-mm (0.5-in.) fluted fins. In case of 

the specimens with 19-mm (0.75-in.) fluted fins, the failure was due to shearing off the 

concrete fins. When the failure was at the CSP-to-foundation interface, the sliding of CSP 

occurred with respect to the surrounding concrete in the foundation, implying shearing in 

concrete of the foundation. 

  
(a) (b) 

Figure 3.4  Failure modes: (a) column segment-to-grout interface failure; (b) CSP-to-

foundation interface failure 

Measured Responses 

Figure 3.5 depicts the applied vertical forces as a function of CF displacements, 

which represents the overall response of each specimen. The CF displacements herein were 

taken as the average values of the measured displacements from three transducers around the 

perimeter of the column segment. The monotonically loaded specimens exhibited higher 

stiffness than their counterparts subjected to cyclic loading. The monotonically loaded 

specimens reached the peak strength in the range of 1174-kN to 1463-kN (264-kips to 329-

kips), while the cyclically loaded specimens resisted as much as 1161-kN to 1370-kN (261-
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kips to 308-kips). The one with smooth column segment surface, which was loaded 

cyclically, failed at 716-kN (161-kips) and exhibited limited ductility. In bridge vertical 

members, it can be conservatively assumed that the applied loads will not exceed 50% of the 

axial load capacity. Given that 1161-kN (261-kips) corresponds to 76% of member axial 

capacity, the side shear in the preformed socket connection with intentionally roughened 

surface would provide satisfactory axial strength for connecting vertical precast members to 

adjoining members. As discussed subsequently, when the horizontal dimension of the 

vertical member increases, the appropriate embedment length should be designed in order for 

the vertical members to sustain large axial load ratios.  

  
(a) F1G1M (b) F2G1M 

  
(c) EG1M (d) F2G2M 
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(e) EG1C (f) SG1C 

  
(g) F1G1C (h) F1G2C 

Figure 3.5  Overall responses of specimens 

Overall, the intentionally roughened surface provided adequate bond strength 

between the grout and the embedded column segment, but the textures with deeper amplitude 

(i.e., 13-mm [0.5-in.] and 19-mm [0.75- in.] fluted fins) led to softer force-displacement 

responses. This is because fins that were constructed as integral part of column segment 

increased the flexibility of the connection in the vertical direction. Longer the fins, more 

flexible the connection became. In addition, a thicker grout closure pour resulting from wider 

CSP-to-column segment clearance tended to reduce the shear stiffness of the connections as 

deformation within the grout closure pour increased. 

As illustrated in Figure 3.6, the CF displacements consisted of CG displacements and 

GF displacements. When a thicker grout closure pour was included, the vertical deformation 
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of grout (Δgrout) was also quantified. Figure 3.7 describes the connection responses in terms 

of each component. To reveal the contribution of each component, plots were created with 

the same scale for the axes. As shown in Figure 3.7a, all specimens exhibited comparable GF 

displacement responses before reaching the peak strength. Hence, the differences in overall 

connection responses seen in Figure 3.5 were the result of sliding at the column segment-to-

grout interface (CG displacements) and the deformation within the grout closure pour itself 

(i.e., Δgrout). Figure 3.7b plots the vertical forces versus CG displacements for the specimens 

with 38-mm (1.5-in.) CSP-to-column segment clearance, but with different column segment 

surface textures. This plot confirms that the adequate roughness was necessary to 

successfully develop the bond strength between the grout and the embedded member. 

However, the textures with deeper amplitude of fins would soften the response at the 

embedded member-to-grout interface. Figure 3.7c compares the force versus CG 

displacement responses for the specimens F1G1C and F1G2C, which have the same column 

segment surface texture but different CSP-to-column segment clearance. Specimen F1G2C 

with thicker grout closure pour resulting from wider CSP-to-column segment clearance 

showed a softer overall connection response than Specimen F1G1C, but the two specimens 

exhibited similar responses at the column segment-to-grout interface. Therefore, given the 

comparable GF displacement responses, it can be stated that a thicker grout closure pour that 

induced significant Δgrout would soften the connection response. With reference to the loading 

type, Figure 3.8 presents a comparison of the specimen responses with the same connection 

parameters but subjected different loading types (i.e., monotonic vs. cyclic). For the 

specimens with the exposed aggregate finish (i.e., EG1M and EG1C), no significant 

cumulative damage was caused by cyclic loading until the applied load was increased to 667-
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kN (150-kips), which was approximately 50% of the peak strength. However, the cyclic 

loading caused increased strength degradation for the specimens with deeper amplitude for 

the column segment surface texture (i.e., F1G1M and F1G1C). 

 

Figure 3.6  Components of CF Displacement 
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(b) 

 
(c) 

Figure 3.7  Comparisons of connection responses: (a) GF disp. responses for all specimens; 

(b) CG disp. responses for specimens with different column segment surface textures; (c) CG 

disp. responses for specimens with different CSP-to-column segment clearances 
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Figure 3.8  Impact of cyclic loading 

Force Transfer Behavior 
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a constant shear stress along the column embedment length. Based on the observations from 
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specimens with column segments having deeper amplitude textures (F1G1 and F2G2) 

(Figure 3.9b). In other words, when subjected to high loads, the surface textures with deeper 

amplitude (i.e., fluted fins) were more efficient in transferring the applied force through the 

side shear mechanism although the corresponding stiffness was earlier found to be softer. As 

a result, the deep amplitude surface texture may be used to reduce the force transfer length. 

  
(a) (b) 

Figure 3.9  Normalized embedded stub longitudinal bar strains under loads of (a) 222-kN, 

445-kN; and (b) 667-kN, 890-kN, 1112-kN 

Discussions 

Structural Performance 

The structural performances of the specimens presented above facilitated 

characterization of side shear mechanism and better understanding of force transfer behavior. 
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a more efficient manner (i.e., over a shorter depth). The thicker grout closure pour resulting 

from wider CSP-to-embedded member clearance also reduced the stiffness of the socket 

connection. The softening was attributed to relatively larger deformations occurring at the 

column-to-grout interfaces and within the grout closure pour itself, which were caused by the 

properties of grout. Under the applied loads, the grout exhibited relatively more flexibility 

than normal concrete due to the lack of hard coarse aggregate and lower modulus. Because of 

more participation of grout, the connections with deeper amplitude surface texture and wider 

CSP-to-embedded member clearance showed softer connection responses. However, the 

deeper amplitude increased the shear resistance, enabling the force to be transferred over a 

reduced embedment depth. Even though the participation of grout led to relatively larger 

deformation, the failure did not occur at the grout closure pour but at the stems of concrete 

fines or foundation concrete surrounding the CSP because the strength of the grout was 

significantly higher than concrete. The cyclic loading reduced the stiffness on the 

connections with deeper amplitude surface texture. However, for the connection with 

exposed aggregate surface, limited effect of cyclic loading was exhibited on the connection 

response when the applied forces were less than 50% of the peak strength. 

Constructability 

Based on the experimental investigation presented herein, the preformed socket 

connection provides great potentials for use in practice due to its ease of construction. The 

socket can be easily established by CSP that serves as stay-in-place formwork. Through the 

construction of the specimens, use of chemical formwork retarder was found to be an 

efficient method to roughen the embedded member surface. The retarder was applied on the 

formwork up to 3-hours ahead of the concrete pour. After removing the formwork when the 

concrete was 3-days old, the laitance was easily removed with high-pressure water to expose 
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the aggregate. The construction process with formliner was also completed with ease. 

However, the damage on precast fins could possible occur during fabrication and 

transportation. The experimental study also examined potential time saving measures for the 

assembly of the socket connection. The process will go smoothly if the right grout is 

identified for the closure pour. The desirable features for grout include high-early-strength, 

extended working time, and appropriate fluid consistency. 

Design Recommendations 

Based on the experimental findings and analyses of data, the following 

recommendations have been formulated for designing and constructing preformed socket 

connections that are appropriate for vertical precast members: 

 Considering both the structural performance and constructability, the exposed 

aggregate finish is suggested for preparing the surface of the vertical precast member 

to be embedded in the preformed socket. This finish can be easily accomplished 

using chemical formwork retarder or an appropriate formliner that can ensure a 

similar surface texture. 

 The CSP-to-embedded member clearance essentially determines the thickness of 

grout closure pour. The commercially available CSP sizes result in the clearances of 

38-mm (1.5-in.) and 76-mm (3-in.) for most bridge vertical members. These two 

likely clearances are appropriate for grout closure pours to sustain axial loads in the 

preformed socket connection. The 76-mm (3-in.) clearance between CSP and 

embedded member would reduce the stiffness of the connection compared to the 38-

mm (1.5-in.) clearance. This could be overcome by stiffening the grout using pea 

gravel with appropriate permission from the grout supplier.  
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 The CSPs with standard corrugation pattern is sufficient to preforming a socket in 

the adjoining member. The minimum 28-days compressive strength of grout 

established according to ASTM C109 (2016) should be 58.61-MPa (8500-psi) to 

ensure sufficient strength and stiffness for the connection. In addition, to properly 

securing the connection, the grout should have the following properties: high early 

strength, fluid consistency, extended working time, and non-shrink characteristic. 

 Failure of a preformed socket connections subjected to an axial load can develop at 

the embedded member-to-grout interface of at the CSP-to-surrounding concrete 

interface. Therefore, the shear stress acting on these two interfaces shall be limited 

when designing the socket connection. For the connections following the above 

construction recommendations and with concrete attaining a compressive strength no 

less than 37.92-MPa (5500-psi), the limiting stresses at the embedded member-to-

grout interface and the CSP-to-concrete interface may be taken as 6.89-MPa (1000-

psi) and 4.83-MPa (700-psi), respectively. Conservatively, these stress limits were 

determined with the lowest axial load of 1174-kN (264-kips) that was reached by the 

tested specimens and the assumption that the shear transfer occurs uniformly along 

the entire length of connection. Therefore, the minimum embedment length in a 

preformed socket connection required for a precast vertical member subjected 

primarily to axial loads can be determined as follows: 

 
𝑙𝑚𝑖𝑛 =

𝑃

𝑝𝑒𝑓𝑔𝑟𝑜𝑢𝑡
≤

𝑃

𝜋𝑑𝐶𝑆𝑃𝑓𝐶𝑆𝑃
 Equation 3-1 

where 𝑙𝑚𝑖𝑛 = the minimum embedment length of the precast vertical member; 𝑃 = 

the design axial load in the vertical member; 𝑝𝑒 = the outer perimeter of embedded 

vertical member cross-section; 𝑑𝐶𝑆𝑃 = inside diameter (nominal diameter) of CSP; 
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𝑓𝑔𝑟𝑜𝑢𝑡 = permissible stress for the embedded member-to-grout interface, 

recommended as 6.89-MPa (1000-psi);  𝑓𝐶𝑆𝑃 = permissible stress for the CSP-to-

surrounding concrete interface, recommended as 4.83-MPa (700-psi). 

Conclusions 

The use of ABC has been implemented to speed up bridge construction. In recent 

years, there has been growing interest in using vertical precast members for the substructure, 

such as columns and piles. Precast vertical members can be embedded in a socket that is 

preformed in the adjoining member using CSP and high-strength grout. This type of 

connection has been identified as a viable means to promote the use of precast vertical 

members. However, there is lack of knowledge regarding the side shear mechanisms that 

provide resistance against axial load and the corresponding stress limits so that the preformed 

socket connection can be designed to sustain high axial loads. As a result, an experimental 

investigation was conducted to evaluate the side shear strength in the preformed socket 

connection. Eight specimens were constructed with the embedded potion of the member in 

the socket connection having the following outer surfaces: a smooth finish, exposed 

aggregate finish, 13-mm (0.5-in.) deep fluted fins, and 19-mm (0.75-in.) deep fluted fins. The 

connection regions replicated typical socket connections at full scale. The specimens with 

different connection parameters were tested by subjecting them to monotonic and cyclic axial 

loading. Based on the findings from the tests and analyses of data, the following conclusions 

can be drawn: 

 All specimens, except the one with smooth column surface, provided significant side 

shear strength against the axial load applied to the column segments. Hence, the 

intentionally roughened embedded member surface, as required by AASHTO, is 
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necessary to develop satisfactory side shear strength to sustain axial loads used in 

routine design practice. However, surface roughness smaller than an amplitude of 6-

mm is adequate, which can be easily achieved by exposing the aggregates.  

 The specimens consisted of the column segments with deep amplitude surface 

textures (i.e., fluted fins) exhibited softer connection responses compared to the one 

with exposed aggregate surface finish. Thicker grout closure pour resulting from 

wider CSP-to-column segment clearance also reduced the stiffness of the socket 

connection.ex 

 For the specimens with deeper amplitude column segment surface texture, the force 

transfer was more efficient when subjecting to high loads due to the increased 

surface roughness, enabling the load to be resisted over a shorter length. 

 Exposed aggregate for embedded member surface preparation, standard CSP, and 

high-strength grout are recommended for establishing socket connections effectively. 

For connections established as described in this study, the side stress limitations of 

6.89-MPa (1000-psi) and 4.83-MPa (700-psi) suggested, respectively, for the 

embedded member-to-grout interface and CSP-to-surrounding concrete interface to 

determine the minimum embedment length of the precast vertical member. 

Acknowledgements 

This study was supported by Iowa Highway Research Board (IHRB) and Federal 

Highway Administration State Transportation Innovation Council (STIC). The authors would 

like to thank the members of the Technical Advisory Committee for their advices and 

suggestions. The experimental investigation used Rapid Set® UltraFlow® 4000/8 and Flex-



www.manaraa.com

82 

LinerTM formliner in the construction of the test specimens. We appreciate the material 

contributions from CTS Cement Manufacturing Corp. and Scott System. 

Reference 

American Association of State Highway and Transportation Officials (AASHTO) (2016). 

“Standard Specification for Steel Sheet, Zinc-Coated (Galvanized), for Corrugated Steel 

Pipe”, AASHTO M 218, Washington, DC. 

American Association of State Highway and Transportation Officials (AASHTO) (2017). 

LRFD Bridge Design Specifications, 8th Ed., Washington, DC. 

ASTM (2016). “Standard Test Method for Compressive Strength of Hydraulic Cement 

Mortars (Using 2-in. or [50-mm] Cube Specimens)”, ASTM C109/C109M-16a, West 

Conshohocken, PA. 

ASTM (2017). “Standard Test Method for Compressive Strength of Cylindrical Concrete 

Specimens”, ASTM C39/C39M-17b, West Conshohocken, PA. 

California Department of Transportation (Caltrans) (2013). Seismic Design Criteria, Version 

1.7, Sacramento, CA. 

Culmo, M. P. (2009). “Connection details for prefabricated bridge elements and 

systems.” FHWA-IF-09-010, Federal Highway Administration, U.S. Department of 

Transportations, Washington, DC. 

Haraldsson, O.S., Janes, T.M., Eberhard, M.O., and Stanton, J.F. (2013). “Seismic resistance 

of socket connection between footing and precast column”, J. Bridge Eng., 18(9), 910-

919. 

Kavianipour, F. and Saiidi, M.S. (2013). “Experimental and analytical seismic studies of a 

four-span bridge system with composite piers”, CCEER-13-17, Center for Civil 

Engineering Earthquake research, Department of Civil and Environmental Engineering, 

University of Nevada, Reno, Reno, NV. 

Marsh, L. M., Wernli, M., Garrett, B. E., Stanton, J. F., Eberhard, M. O., and Weinert, M. D. 

(2011). “Application of accelerated bridge construction connections in moderate-to-high 

seismic regions.” Rep. 698, National Cooperative Highway Research Program 

(NCHRP), Transportation Research Board, Washington, DC. 

Mehrsoroush, A. and Saiidi, M.S. (2016). “Cyclic response of precast bridge piers with novel 

column-base pipe pins and pocket cap beam connections”, J. Bridge Eng., 21(4): 

04015080. 

 

 



www.manaraa.com

83 

Mohebbi, A., Saiidi, M.S., and Itani, A. (2017). “Development and seismic evaluation of pier 

system w/pocket connections, CFRP tendons, and ECC/UHPC columns”, CCEER-17-

02, Center for Civil Engineering Earthquake research, Department of Civil and 

Environmental Engineering, University of Nevada, Reno, Reno, NV. 

Motaref, S., Saiidi, M.S., and Sanders, D. (2011). “Seismic response of precast bridge 

columns with energy dissipating joints”, CCEER-11-01, Center for Civil Engineering 

Earthquake research, Department of Civil and Environmental Engineering, University of 

Nevada, Reno, Reno, NV. 

Precast/Prestressed Concrete Institute (PCI). (2000). “Tolerance Manual for Precast and 

Prestressed Concrete Construction”, MNL 135-00, Precast/Prestressed Concrete 

Institute, Chicago, IL. 

Precast/Prestressed Concrete Institute (PCI). (2007). “Architectural Precast Concrete Manual, 

Section 3.5”, Precast/Prestressed Concrete Institute, Chicago, IL. 

Sritharan, S. and Cheng, Z. (2016). “Accelerated Bridge Construction (ABC) – Substructure: 

Grout.” http://sri.cce.iastate.edu/ABC-Guidelines/Grout%20New.html (Sep. 30, 2017) 

Utah Department of Transportation (UDOT) (2017). Structural Design and Detail Manual, 

UDOT SDDM, Taylorsville, UT. 



www.manaraa.com

84 

CHAPTER 4.    AN OUTDOOR TEST OF A PREFABRICATED COLUMN-PILE 

CAP-PILE SYSTEM UNDER COMBINED VERTICAL AND LATERAL LOADS 

A paper prepared for the ASCE Journal of Structural Engineering 

Zhao Cheng, S.M.ASCE1 and Sri Sritharan, Ph.D., M.ASCE2 

1Graduate Research Assistant, Dept. of Civil, Construction, and Environmental Engineering, 

Iowa State Univ., Ames, IA 50011. E-mail: zcheng@iastate.edu 

2Wilkinson Chair of Interdisciplinary Engineering, Dept. of Civil, Construction, and 

Environmental Engineering, Iowa State Univ., Ames, IA 50011 (corresponding author). E-

mail: sri@iastate.edu 

Abstract 

An outdoor test was conducted on a prefabricated column-pile cap-pile system at a 

cohesive soil site. The half-scale test unit consisted of a precast column, a precast pile cap, 

and eight steel piles. The components were connected utilizing socket and pocket 

connections that were preformed in the pile cap with corrugated steel pipes. To evaluate the 

system performance and the behavior of various connections, the test unit was subjected to 

combined vertical and lateral loads at the operating conditions as well as at conditions 

representing extreme events. The test unit remained undamaged under the loads representing 

the operating conditions, and a plastic hinge was formed in the column under loading 

condition representing a seismic event. The socket and pocket connections exhibited 

excellent behavior as they maintained fixity with the formation of a column plastic hinge. 

The outdoor test demonstrated that up to 40% column top displacement was produced by 

foundation flexibility at the operating conditions. The description of the outdoor test and key 

results are included in this paper. 

Keywords: Column; Pile cap; Pile; Socket connection; Pocket connection; Soil-Foundation-

Structure Interaction (SFSI); Outdoor testing. 
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Introduction 

Prefabricated components for bridges and other structures have several advantages 

over conventional cast-in-place components as they can be used to repair and build structures 

faster and better. The use of prefabricated components reduces mobility impacts, enhances 

work-zone safety, improves construction quality and durability, and minimizes 

environmental impacts (Culmo 2011). Due to their advantages, prefabricated components 

have been continuously gaining momentum in construction of bridge columns (ABC-UTC 

2018). However, there are few, if any, projects that have utilized prefabricated components to 

construct the entire column-pile cap-pile systems. An important concern for prefabricated 

column-pile cap-pile system is the lack of efficient and easily deployable connections 

between the key prefabricated components. Piles are normally capped with a concrete cap to 

support a column. If a full prefabricated column-pile cap-pile system is desired, the 

connection between column and pile cap as well as the connections between pile cap and 

piles must be able to transfer loads under regular operating conditions dependably and 

preferably remain elastic when the structure is subjected to extreme events including 

earthquakes. The seismic design takes advantage of deliberate formation of plastic hinges in 

preselected locations and protect all the other regions against damage by maintaining elastic 

response. For typical bridge column-pile cap-pile systems, practices seek to design plastic 

hinges at the column ends. Therefore, the column connection and pile connections to the pile 

cap need to sustain high design forces resulting from the formation of column plastic hinges, 

making their designs more challenging. 

Several methods have the potential to establish connections for prefabricated column-

pile cap-pile systems. They include: 1) splicing of reinforcements of adjoining prefabricated 

elements using mechanical couplers (Ameli and Pantelides 2017; Haber et al. 2014); 2) 
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grouted ducts to embed individual reinforcement extending from one component to another 

(Restrepo et al. 2011); 3) preformed pockets for embedding a group of reinforcements or the 

end of a prefabricated member with a large volume closure pour (Restrepo et al. 2011); 4) 

preformed sockets for embedding the end of members with a small volume closure pour; 5) 

casting a concrete member surrounding the prefabricated member (Haraldsson et al. 2013), 

and 6) post-tensioning (Culmo 2009; Marsh et al. 2011). Among these connection types, the 

socket and pocket connections offer numerous advantages including compatibility with 

prefabricated components, ample installation tolerance, and simplified construction 

procedure, making these two types of connections more desirable for field implementations. 

The feasibility of using socket connections for prefabricated columns has been 

investigated in the past. Motaref et al. (2011) and Kavianipour et al. (2013) tested socket 

connections between precast columns and precast footings. The octagonal shaped sockets 

were performed in the precast footings and then filled with high strength grout. The column 

embedment length was 1.5 times column diameter in both studies. The tests showed 

successful development of column plastic hinges with column axial load ratio of 6.3% and 

8.8%, respectively. Mehrsoroush and Saiidi (2016) used corrugated steel pipe (CSP) to create 

sockets. This study, which applied a maximum axial load ratio of 5.6%, showed that a 

column embedment length of 1.2 times column diameter was adequate to form plastic hinges 

in the column. Mohebbi et al. (2017) tested a socket connection for a square column with an 

axial load ratio of 14.4%. Results revealed that the column embedment length equal to the 

column side dimension was sufficient to develop the column plastic moment. Cheng and 

Sritharan (2019) evaluated the side shear strength of socket connections under uniaxial loads. 

Test results showed that side shear mechanism can provide significant resistance, facilitating 
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high axial loads to be sustained. The study also provided design limits for side shear stress in 

socket connections. 

The performed pocket connections for steel H-piles were tested under axial load, and 

the results indicated that the axial strength of the pocket connection was at least as good as 

that of a comparable cast-in-place connection (Wipf et al. 2009). Shama et al. (2002) 

evaluated the behavior of a pile-to-cap connection with the pile embedment length of 2.8 

times pile depth. In this study, the connection remained essentially undamaged when the 

combined axial and lateral loads caused fail in the piles. Xiao et al. (2006) demonstrated that, 

using shallow embedment length of 0.36 times pile depth, the pile-to-cap connection can 

sustain a significant amount of moment, while localized brittle failure was observed in the 

connection.  

Conceptual Design of a Precast Pile Cap 

Addressing the challenges of constructing a prefabricated column-pile cap-pile 

system, a precast pile cap with preformed column socket and pile pockets (Figure 4.1a) was 

developed. By embedding a precast column and steel piles into a socket and pockets, 

respectively, with the use of closure pours, the construction of the column-pile cap-pile 

system can be completed in a shortened period. The socket and pockets can be accomplished 

using commercially available CSP due to its low cost and ready availability in different sizes. 

In addition to serving as stay-in-place formwork, CSP offers confinement effects to the 

connection material while its corrugations provide a robust load transfer mechanism (UDOT 

2017). The column socket is intended to penetrate the pile cap partially for multiple reasons. 

First, this allows the precast column to be supported on the bottom of the pile cap during 

assembly. Second, the bottom mat reinforcement of the pile cap can be continuous below the 

column, which also helps minimizing punching failure of the column through the soffit of the 
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pile cap. Third, the bottom of the socket connection does not need to be sealed during the 

closure pour. Finally, given the stress limits suggested by Cheng and Sritharan (2019), the 

partially penetration is sufficient to transfer column axial force through the side shear 

mechanism and without increasing the depth of the pile cap, eliminating any significant 

increase in the weight or cost of the pile cap. 

The pile pocket is envisioned to fully penetrate through the pile cap to facilitate 

closure pours from the top of the pile cap. The upper portion of the pocket is made in the 

shape of a cone, which ensures satisfactory distribution and quantity of the top pile cap mat 

reinforcement. A straight CSP option was also considered for the pile pocket, which required 

cutting of numerous notches to place all the top mat reinforcement, and thus this option was 

not pursued. 

As illustrated in Figure 4.1b, to assemble the column-pile cap-pile system, the 

following steps are planned: 1) drive steel piles into the ground by employing a template to 

maintain the piles at the appropriate location; 2) install the friction collars to the piles and 

place sealing pads made from plywood on top of the friction collars to close the bottom 

opening of the pile pockets; 3) support the precast pile cap on the friction collars, allowing 

the piles to be extended into the pile pockets; 4) erect and brace the precast column into the 

column socket; and 5) fill the column socket and pile pockets with grout and self-

consolidating concrete (SCC), respectively. Instead of directly positioning the pile cap on the 

ground, the use of friction collars allows quick assembly of the system in in all types of 

ground conditions. Friction collars are designed to carry the weights of pile cap, column, and 

upper structural components before SCC reaches an adequate strength. Therefore, 

construction can continue on the day after completing the closure pours, at which point high 
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early-strength grout would reach the specified compressive strength of 44.8 MPa (6500 psi). 

After SCC reaches its specified short-term strength (e.g., at the age of 7 days), the friction 

collars can be removed. 

  
(a) (b) 

Figure 4.1  Prefabricated column-pile cap-pile system: (a) precast pile cap and (b) 

construction process 

Test Plan 

An experimental test plan was formulated to investigate the performance of the 

proposed prefabricated column-pile cap-pile system. The prototype was designed using a 

recently built, three-span pretensioned prestressed concrete beam bridge in Iowa, with a 27-m 

(87-ft) midspan and 14-m (46-ft) end span. The pier of the prototype bridge consisted of two 

precast concrete columns, and eight steel H-piles capped with a precast pile cap supports 

each column. For the columns, the longitudinal reinforcement ratio was 1.7%, and the 

transverse reinforcement was designed following the approach of Priestley et al. (1996) to 

fully develop the column flexural capacity. Battered piles were used at the corners of the pile 

cap in conjunction with four straight piles. Using this prototype structure, a half-scale 

column-pile cap-pile system with a single column was planned for the outdoor test. 
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Site Conditions 

The outdoor test was conducted at a cohesive soil site close to the campus of Iowa 

State University. Subsurface exploration was performed using a cone penetration test (CPT) 

to the depth of 15 m (50 ft) below the ground, which indicated that soil at the test site mainly 

consists of stiff clay with a 1.5-m (5-ft) thick sand layer at the depth of 10 m (33 ft). The CPT 

data obtained at the test site is comparable to that reported in Sritharan et al. (2007). The 

average tip resistances in the 0-m (0-ft) to 9.3-m (30.5-ft), 9.3-m (30.5-ft) to 10.8-m (35.5-ft), 

and 10.8-m (35.5-ft) to 15 m (50 ft) depth ranges were 2.4 MPa (25 tsf), 12.5 MPa (130 tsf), 

and 4.8 MPa (50 tsf), respectively. The water table was at approximately 2.3 m (7.5 ft) below 

the ground surface at the time of testing. 

Details of Test Unit 

As noted, the test unit incorporated a column, a pile cap, and eight steel H-piles. The 

column diameter was scaled to 0.46 m (1.5 ft), and the height of the column was chosen to be 

1.83 m (6 ft), resulting in a flexure-critical column with a height-to-depth ratio of 4. The 

column embedment length was chosen to be equal to the column diameter in the light of the 

recommendations from previous studies. Under a column axial load ratio of 25%, the side 

shear stress corresponding to this embedment length would be 1.7 MPa (246 psi), which was 

significantly lower than the limits proposed by Cheng and Sritharan (2019). Combining with 

the embedded portion, the total column length was 2.29 m (7.5 ft). According to Cheng and 

Sritharan (2019), 0.46-m (1.5-ft) length of the column at the end, which was designed to be 

embedded into the socket, was intentionally roughened. As shown in Figure 4.2a, the column 

was reinforced with fourteen #16M (#5) longitudinal reinforcing bars and a continuous #10M 

(#3) reinforcing spiral at a spacing of 76 mm (3 in.), resulting in identical reinforcement 

ratios to these of the prototype. For applying the vertical and lateral loads, a 1 m (3.5 ft) by 1 
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m (3.5 ft) by 0.61 m (2 ft) loading block was added to the top of the column. Figure 4.2b 

shows the pile layout used for the test unit, in which the four corner piles were battered at a 1 

horizontal to 6 vertical slope as in the case of the prototype structure. The piles for the test 

unit were scaled to be U.S. W 6 × 20 beams, and the length of the piles were determined to 

be 15 m (50 ft) based on the unit friction of 23.4 kN/m (1.6 kip/ft) for firm silty glacial clay 

and a geotechnical resistance factor of 0.6. The dimensions of the pile cap were 1.83 m (6 ft) 

by 1.83 m (6 ft) in plan and 0.61 m (2 ft) in depth. The bottom and top reinforcement mats in 

the pile cap consisted of fourteen and twelve continuous #13M (#4) reinforcing bars in both 

directions, and the vertical reinforcements were #10M (#3) fully lapped stirrups with 180° 

hooks at both ends. As shown in Figure 4.2b, a partially penetrated socket and eight fully 

penetrated pockets were designed for the pile cap. The depth of the column socket was 483 

mm (19 in.) to incorporate the 457-mm (18-in.) column embedment length. Following the 

routine design practices (Iowa DOT, 2018) and previous studies, the pile embedment length 

of 229 mm (9 in.) was selected, corresponding to 1.5 times the depth of pile. CSPs with a 

thickness of 1.29 mm (i.e., 16 gauge) for creating column socket and pile pockets met the 

requirements of AASHTO M 218 (2016). The nominal inside diameter of the column socket 

CSP was selected to be 553 mm (21 in.), which was the smallest commercially available size 

fitting the 457-mm (18-in.) diameter column. The 457-mm (18-in.) diameter CSPs were used 

for pile pockets from considerations of construction tolerances and geometry of the battered 

piles. 
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(a) (b) 

Figure 4.2  Test unit details: (a) column and (b) pile cap 

Construction 

The column and the pile cap were prefabricated at the Structural Engineering 

Research Laboratory of Iowa State University, transported to the field site, and connected to 

the driven piles. To achieve the desired surface roughness on the end portion of the column 

(Figure 4.3a), Altus Series In-Form retarder was applied on the formwork interior surface, 

followed by power-washing the laitance after hardening of the concrete mass at the age of 3 

days. When constructing the pile cap, the pipe diameter reducers were used to create the 

cone-shaped upper portions of the pile pockets. As seen in Figure 4.3b, the CSP for creating 

the column socket was suspended from a crossing beam that was clasped to the formwork, 

and its bottom end was temporarily closed by a round plywood board. The crossing beam and 

the plywood were removed after the concrete set.  
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To ensure that the piles were driven at the right location, a template was secured to 

the ground. Because piles with high slenderness ratio may buckle during driving, each 15-m 

(50-ft) long pile was made from two 9-m (30-ft) long segments. After the first 9-m (30-ft) 

pile segments were driven into the ground, the second 9-m (30-ft) top segments were spliced 

by full penetration groove welds and subsequent driving of piles. Once the designed pile 

penetration depth was reached, the extra length was cut, such that tip of all piles were at the 

same horizontal plane. As seen in Figure 4.3c, the friction collars were then attached to the 

piles. The height of the friction collars were adjusted such that the pile cap would be 

positioned at 0.3 m (1 ft) above the ground. The gap between the pile cap and ground was to 

eliminate the passive earth pressure acting on the pile cap and to provide access to the bottom 

of the pile cap for test observation and instrumentation purposes. The plywood pads with 

rubber foam strips attached around their perimeters were placed on the friction collars in 

order to seal the bottom opening of the pile pockets. After positioning the pile cap on the 

friction collars and erecting the column into the socket, grout and SCC were poured on the 

same day to secure the column socket and the pile pockets, respectively. To establish a strong 

and durable connection, grout with the following properties was chosen to fill the column 

socket: high-strength, non-shrink, fluid consistency, extended working time, and high-early-

strength. The grout gained compressive strength of 60.9 MPa (8834 psi) in 24 hours and SCC 

achieved 31.8-MPa (4613-psi) compressive strength at the age of 7 days, at the point the 

friction collars and the plywood pads were removed from the test unit. The completed test 

unit is shown in Figure 4.3d. 
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(a) (b) 

  
(c) (d) 

Figure 4.3  Test unit construction: (a) roughened surface of column end, (b) pile cap prior to 

concrete pour, (c) driven piles, and (d) completed test unit 

Material Properties 

The strength of concrete and grout on the day of testing were obtained from uniaxial 

compression tests on standard 102 mm (4 in.) by 204 mm (8 in.) cylinders and 50-mm (2-in.) 

cube specimens, respectively. The properties of the reinforcement were established from 

uniaxial tension tests for each reinforcement type. Table 4.1 lists the material properties of 

the test unit components, which also include the pile steel properties reported in the mail 

certificate. 
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Table 4.1  Test unit material properties 

Component 
Compressive strength 

(MPa) 

Yield strength 

(MPa) 

Tensile strength 

(MPa) 

Columna 31.2 N.A. N.A. 

Pile capa 39.9 N.A. N.A. 

SCC for filling the pile pocketsa 48.7 N.A. N.A. 

Grout for filling the column socketb 66.1 N.A. N.A. 

Reinforcing spiralc N.A. 468.8 682.6 

Reinforcing barc N.A. 437.8 690.9 

Piled N.A. 369.5 498.5 
aTested as per ASTM C39-18 (2018) 

bTested as per ASTM C109-16a (2016) 

cTested as per ASTM A370-14 (2014) 

dTested as per ASTM A709-15 (2015) 

 

Test Setup and Instrumentation 

A reaction frame and a reaction column, as shown in Figure 4.4, were constructed at 

the test site for applying the vertical and lateral loads to the test unit, respectively. The 

reaction frame was composed of four U.S. HP 14 × 73 anchor piles driven to 15 m (50 ft) 

into the ground, a main reaction beam, four hollow hydraulic cylinders powered by an 

electric pump, and miscellaneous attachments. The hydraulic cylinders pushed the main 

reaction beam down as they were pressured, thereby generating gravity effects on the column 

while subjecting the anchor piles to tension. A friction pendulum bearing was installed 

between the top of the column loading block and the main reaction beam. This bearing was 

used to transfer the vertical loads from the main reaction beam to the column with minimal 

friction against lateral load, while allowing translation and rotation of the column. The lateral 

reaction column was composed of five precast column segments and a 1.8-m (6-ft) diameter, 

12-m (40-ft) deep drilled shaft foundation, which were connected together through four post-

tensioned rods anchored into the drilled shaft. A double-acting hydraulic actuator controlled 
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by an electric servo pump was attached between the column loading block and the reaction 

column. This actuator was used to apply lateral loads to the top of the column. 

  
(a) (b) 

Figure 4.4  Test setup: (a) vertical reaction frame, and (b) lateral reaction column 

Load Protocol 

The outdoor test of the column-pile cap-pile system consisted of two phases. Each 

phase applied a combination of vertical and lateral load as shown in Figure 4.5. A load 

combination representing the design loads at the regular operating conditions was applied in 

Phase I. In this phase, after the application of the cyclic vertical loads, the reversed cyclic 

lateral loads were applied to the top of the column while the vertical load was maintained. 

The target vertical load corresponded to a column axial load ratio of 0.25, and the target 

lateral load was equal to 5% of the targeted vertical load. The target values for both vertical 

and lateral loads were achieved in five steps with three cycles at each loading step. Phase II 

test was conducted with a reduced column axial load ratio of 0.1, but evaluated the ability to 

develop the full flexural capacity with the designed connections. Following the vertical load 

application, the lateral load that was expected to cause yielding of the column longitudinal 
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reinforcement was achieved in four steps with three cycles at each load step. Subsequently, 

the test unit was subjected to a reversed cyclic lateral displacement history. The peak of each 

step was controlled by the measured displacement at the location where the lateral load was 

applied, and the displacement was increased in steps such that the displacement ductilities of 

1, 1.5, 2, 3, 4, and 6 could be achieved with the lateral displacement of 31.75 mm (1.25 in.) 

corresponding ductility 1. 

   
(a) (b) 

Figure 4.5  Test protocol for (a) Phase I and (b) Phase II 

Test Outcomes 

Observations 

After applying the vertical and lateral loads in Phase I, no cracking or any other 

damage was observed on column, pile cap, piles, or their connections. Response of the test 

unit during Phase II was also excellent with an eventual formation of a plastic hinge at the 

base of the column as intended, while the pile cap, piles, and connections remained 

essentially elastic and undamaged. Flexural cracks began to develop at the column base when 

the applied lateral load reached 112 kN (25.2 kips). Cracking continued to develop over the 

lower 914 mm (36 in.) of the column as testing progressed and the column lateral 

displacement was progressively increased. When the column lateral displacement at the 
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height of the lateral actuator, hereafter referred to as the column top lateral displacement, 

reached 48 mm (1.875 in.), the concrete covers on the base of the column began to crushed 

and spall. The extent of spalling increased during loading cycles of ±63.5 mm (±2.5 in.), and 

the longitudinal reinforcements and reinforcing spiral in the column were exposed during 

loading cycles of ±95 mm (±3.75 in.), as shown in Figure 4.6a. During loading cycles to 

±127 mm (±5 in.), column concrete damage extended to the core concrete, and a longitudinal 

reinforcement buckled between two adjacent spirals near the base. When the column was 

pushed to 191-mm (7.5-in.) lateral displacement, the longitudinal reinforcement that buckled 

in the previous load step fractured in tension. As the column was subjected to cyclic 

displacement of ±191 mm (±7.5 in.), multiple column longitudinal reinforcements fractured, 

and a significant portion of the core concrete was crushed. The condition of the column base 

at the end of Phase II  after removal of loose concrete is shown in Figure 4.6b. A cracking 

appeared in the column connection at the grout-to-CSP interface during loading cycles to ± 

32 mm (±1.25 in.). During subsequent large displacement cycles in Phase II, the top 19-mm 

(0.75-in.) layer of the grout experienced crushing (Figure 4.6c), but the connection 

maintained its integrity and continued to sustain the vertical and lateral load applied to the 

column. 

   
(a) (b) (c) 

Figure 4.6  Test Observations: (a) damage in column, (b) column base at the end of Phase II, 

and (c) grout spalling 
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System Response 

Figure 4.7 presents the measured vertical load as a function of the column top lateral 

displacement with respect to the pile cap. Due to the concave shape of the pendulum bearing 

base, the vertical load increased as the column was laterally displaced with respect to the 

main reaction beam. To avoid overloading the test unit during Phase II, the vertical load was 

intentionally adjusted twice when the column top displacement reached -64 mm (2.5 in.) and 

-95 mm (3.75 in.). The presence of vertical load caused some lateral resistance at the top of 

the column due to friction in the pendulum bearing. Therefore, the lateral load transferred to 

the column, which will be referred as the column lateral resistance, was not equal to the load 

applied by the actuator and had to be determined by other means as detailed below. 

 

Figure 4.7  Vertical load versus column top lateral displacement 

The moment of an uncracked column section located at 1.22 m (48 in.) above the 

column base (i.e., the reference section) was estimated using the theoretical moment-

curvature relationships obtained for different axial forces and as-built column section 

properties. Given the curvature at the reference section that was obtained from the strains 

measured in the two extreme column longitudinal reinforcements, the moment at the 

reference section was estimated from the moment-curvature verses axial force plot shown in 

Figure 4.8. Note that the column did not experience any cracking at this level and that the 
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moment estimated at the reference section included the component resulting from the P-Δ 

effect. Therefore, as illustrated by Figure 4.8, the column lateral resistance was calculated as 

follows: 

 
𝐹 =

𝑀 − 𝑃∆1

ℎ1
 Equation 4-1 

where 𝐹 = column lateral resistance; 𝑀 = moment estimated at the reference section; 𝑃 = 

vertical load; ∆1 and ∆2 = eccentricities of the vertical load measured at the reference section 

and the column base; ℎ1 and ℎ2 = distances from where the lateral load was applied to the 

reference section and the column base. 

  
(a) (b) 

Figure 4.8  (a) Calculation of moment at the reference section and (b) calculation of column 

lateral resistance 

Figure 4.9 presents the moment component at the column base resulting from the 

estimated column lateral resistance (𝐹ℎ2) and the component resulting from the vertical load 

(𝑃∆2), representing the column lateral response. The theoretical moment-deformation 

responses for the column subjected to 1068-kN (240-kips) and 556-kN (125-kips) axial 

forces were calculated as per Priestley et al. (1996), which are also included in Figure 4.9 for 

Phase I and Phase II testing, respectively. The good agreement between the calculated and 
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theoretical responses confirmed the sufficient accuracy of the estimated lateral load resisted 

by the column. The column remained elastic during Phase I testing, but experienced stable 

nonlinear response with dependable hysteresis loops during Phase II testing. The response 

remained essentially elastic up to the column lateral deformation of up to ±25 mm (±0.98 

in.), beyond which inelastic behavior dominated the response with a slight positive slope. 

The maximum moments reached in the push and pull directions were 282 kN-m (2496 k-in.) 

and -275 kN-m (2434 k-in.), which were estimated at the column displacement of 84 mm 

(3.31 in.) and -58 mm (-2.30 in.), respectively. The first drop of the column base moment 

occurred when the column displacement reached 116 mm (4.57 in.) due to the damage that 

occurred to the core concrete and buckling of a longitudinal reinforcement. As the column 

was displaced to 181 mm (7.13 in.) in the push direction, one column longitudinal 

reinforcement fractured in the plastic hinge region, causing a further drop in moment 

resistance. As more reinforcements fractured when the column was pulled to the deformation 

of -191 mm (-7.5 in.), significant strength degradation occurred. 

 

Figure 4.9  Column base moments versus column lateral displacement 
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To illustrate the foundation flexibility, Figure 4.10 shows the column lateral load 

versus the pile cap lateral displacement response, which indicated essentially elastic response 

in both phases of testing. The maximum displacements that the pile cap reached in the push 

and pull directions were 4.3 mm (0.17 in.) and -4.8 mm (-0.19 in.), respectively. The 

response exhibited some nonlinearity during Phase II due to the formation of permanent gaps 

between the piles and surrounding soil. 

 

Figure 4.10  Column lateral load-pile cap displacement response 

Connection Performance 

The strains along the two extreme column longitudinal reinforcements (i.e., Rebar 1 

on the south side and Rebar 4 on the north side) were instrumented with strain gauges. Figure 

4.11a and Figure 4.11b present the strain profiles obtained for these two bars for the push 

(positive load) and pull cycles (negative load) during Phase I and Phase II testing. Some of 

the gauges became malfunctioned during Phase II. In Phase I, the recorded strains were less 

than 45% of the yielding stain, conforming the elastic column response. Within the 

connection, the strain penetration was seen, but the magnitude of strains abruptly decreased 

to a fraction of that at the top of the pile cap. The reading became negligible within the lower 

152-mm (6-in.) region of the embedded column end. During Phase II testing, the tensile 

strains in the column reinforcements significantly increased compared to those in Phase I, as 



www.manaraa.com

103 

the column lateral loads increased and the vertical load decreased. Prior to the column lateral 

loads reaching 81 kN (18.1 kips) and 58 kN (13.1 kips) in the push and pull directions, the 

strains along the reinforcements remained approximately linear with the magnitudes 

remaining below the yielding value. As the load increased, the extreme column longitudinal 

reinforcing bars experienced yielding over the 610-mm (24-in.) region above the top of the 

pile cap, with the largest strain being recorded near the column to pile cap interface. 

Reinforcement yielding also penetrated up to 152 mm (6 in.) into the connection, but the 

strains within the connection decreased abruptly. Down from 305 mm (12 in.) below the top 

of the pile cap, the strains maintained below 50% of the yield strain. 

 
(a) 
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(b) 

Figure 4.11  Strain profiles along two extreme column longitudinal reinforcements for (a) 

Phase I and (b) Phase II 

The strain profiles at the north sides of the CSP that created the column socket are 

shown in Figure 4.12. With the largest reading of 170 με, the strains in the CSP remained far 

below its specified yielding strain of 1138 με for the duration of Phase I and Phase II. The 

strains on the north side of the CSP consistently varied with the application of the lateral 

loads. Generally, the gauges captured compressive strains for the push cycles and tensile 

strains for the pull cycles. Few exceptions occurred when relatively large pull loads (e.g., 73-

kN and 96-kN loads in Phase II) were applied. 
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(a) 

 
(b) 

Figure 4.12  Strain profiles of column socket CSP for (a) Phase I and (b) Phase II 

For the duration of Phase I and Phase II, the measured pile penetrations and rotations with 

respect to the pile cap were negligible. Figure 4.13a and Figure 4.13b present the profiles of 

the strains along the embedded ends of the southwest pile, west pile, and south pile in Phase I 

and Phase II, respectively, in which the strains at the pile tops were taken as zero. During Phase 

I and Phase II, the measured strains did not exceed 18% of the yielding value. In Phase I, piles 

remained in compression, indicating that the gravity load effects were still predominate. The 

tensile strains were recorded on the southwest and south piles in Phase II. The magnitude of 
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the strains varied depending on the magnitude of the lateral load. As the lateral load produced 

more effect on the extreme piles, the strain variations for the southwest and south piles were 

greater than that of the west pile. The strains of the two piles at mid-depth of the embedded 

portion were approximately half of those at the pile cap bottom regardless of the magnitude of 

the lateral loads, resulting in the roughly linear strain profiles. The strains of the CSPs that 

created the pockets for connecting the southwest, south, and west piles were also monitored, 

but the measured values were negligible for the duration of Phase I and Phase II. 

 
(a) 
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(b) 

Figure 4.13  Strain profiles of embedded piles for (a) Phase I and (b) Phase II 

Discussion 

Column Socket Connection and Pile Pocket Connections 

Visual observations indicated that, except slight spalling of the grout closure pour in 

the column socket toward the end of Phase II test, the connections remained mostly damage-

free when the column flexural capacity was fully developed. The strain profiles below the top 

of the pile cap reflect the force transfer in the connection. In Phase I, as a high axial load 

acted in the column, the strain profiles above the pile cap top shifted to the compressive side, 

whereas the shifting abruptly decreased within the connection. Additionally, the strains 

became negligible in the bottom third of the connection regardless of the application of the 

lateral loads. This phenomenon demonstrated that the socket connection transferred the axial 

compressive force over a short length, as evidenced by Cheng and Sritharan (2019). Even 

with small lateral load applied in Phase I test, the force transfer took place mostly in the top 

two thirds of the connection. The shifting of the strain profiles was barely visible in Phase II 

because the applied vertical load dropped to the 40% of that in Phase I. When the applied 
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lateral load developed the column plastic capacity, the strains measured at where right below 

the top of the pile cap exceeded the yielding value, but abruptly decreased and were 

negligible at the end of the column, suggesting that the embedment length of the socket 

connection sufficiently transferred the combined axial force and moment. The force transfer 

capacity of the socket connection was also demonstrated by the measured behavior of the 

column CSP (Figure 4.12). The strain profiles suggested that the force transfer took place 

mostly in the top two thirds of the connection, as the strains in the bottom third of the column 

CSP were negligible. Given the captured force transfer behavior and the low magnitude of 

the strain in the column CSP, the embedment length equal to one times the column diameter 

was required for the column socket connection subjected to combined axial and lateral 

forces, but the thickness of the CSP could likely be reduced without compromising the 

connection performance. 

No damage was observed in the pile pocket connections, proving the connection 

fixity. The force transfer capacity of the pocket connection was reflected by the 

approximately linear strain profiles along the embedded ends of the piles (Figure 4.13). By 

embedding the piles 229 mm (9 in.) (i.e., 1.5 times the pile section depth) into the pockets, 

the connections transferred pile compressive and tensile forces to the pile cap, evidencing the 

sufficiency of the pile embedment length. 

Foundation Flexibility 

For the column-pile cap-pile system, it is important to recognize the foundation 

flexibility, which can be quantified using the measured pile cap response. The lateral load-

translation response shown in Figure 4.10 demonstrate that, as the design required, the 

foundation remained linearly elastic and damage-free when the column flexural capacity was 

fully developed at the end of Phase II. The effect of foundation flexibility on the system 
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response was examined in terms of column top lateral displacement. As illustrated in Figure 

4.14a, the lateral displacement at the top of the column consisted of three distinctive 

components, namely the column deformation with respect to the pile cap and those due to 

pile cap lateral translation and pile cap rotation. Figure 4.14b presents the proportions of each 

component to the column top displacement for different lateral loads in Phase I and Phase II. 

In Phase I, about 40% of column top displacement was induced by the foundation flexibility, 

and this proportion remained approximately constant regardless of the magnitude of lateral 

load. Furthermore, the components due to pile cap translation and rotation were 

approximately the same. As the lateral load increased in Phase II with the plastic capacity of 

the column was developed, the contribution of the pile cap became small due to the 

foundation response remaining essentially elastic. The combined proportion of the pile cap 

translation and rotation components was 10% of the column top lateral displacement when 

the effective lateral load reached its maximum value of 139 kN (32.3 kips). Given the notable 

contribution of the pile cap translation and rotation towards the column top lateral 

displacement, it is important to account for the foundation flexibility when estimating the 

column yield and ultimate displacement. Note that the test was conducted in stiff clay and 

therefore larger contribution from foundation flexibility should be expected in softer soils. 
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(a) (b) 

Figure 4.14  (a) Components of column top displacement and (b) their proportions for Phase 

I and Phase II 

Energy Dissipation 

The area of the effective lateral load-displacement loop and equivalent viscous 

damping are shown in Figure 4.15a and Figure 4.15b, respectively. An excellent hysteresis 

response was obtained from the test unit. The area of the hysteretic loop increased almost 

linearly as the displacement ductility increased. The equivalent viscous damping of the 

system increased from 2.3% for the first cycle at displacement ductility of 1 to 31% for the 

first cycle at displacement ductility of 6. The difference in the equivalent damping was 

negligible between Cycle 1, 2, and 3. 

  
(a) (b) 

Figure 4.15  (a) Area of hysteresis loops and (b) equivalent viscous damping 



www.manaraa.com

111 

Constructability 

Based on the experimental works presented herein, the precast pile cap with column 

socket and pile pockets provides great potential for use in routine practices due to its ease of 

construction. The socket and pockets can be easily established by commercially available 

CSP served as stay-in-place formwork. Chemical formwork retarder was found to be an 

efficient method to achieve the desirable surface roughness at the end of the column. The use 

of friction collars allows quick assembly of the system in all types of ground conditions and 

facilitates better control on erection tolerances. The closure pour for the column socket went 

smoothly which was due to the following desirable features of the grout: high-early-strength, 

extended working time, and appropriated fluid consistency. 

Conclusions 

In recent years, there has been interested in using prefabricated components in bridge 

construction. The preformed socket and pockets connections have been identified as a viable 

means to connect prefabricated components. The prefabricated column-pile cap-pile system 

was developed utilizing the socket and pocket connections that are created in the precast pile 

cap using commercially available CSPs. To investigate the performance of the prefabricated 

column-pile cap-pile system as well as the connection behavior, an outdoor test was 

conducted at a cohesive soil site. The unique features of the test included the following: 1) 

incorporation of foundation flexibility, 2) use of steel H-piles to design a foundation 

supporting a column that could resist seismic loads, 3) inclusion of battered piles, and 4) use 

of axial load in an outdoor lateral load test. 

Under the combination of vertical and lateral loads acting on the column top, the 

column plastic capacity was developed near the column base, but no damage was observed in 
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the pile cap, piles, or in any of the connections. Based on the test results, the following 

conclusions can be drawn: 

 The test unit exhibited stable energy dissipation capacity as the plastic hinge was 

fully developed in the column, and the pile cap and connections remained undamaged 

throughout the test. This proved that the performance of the prefabricated column-pile 

cap-pile system was excellent and is believed to be at least as good as, if not better 

than, that of a conventional cast-in-place system. For the column socket connection, 

the embedment length equal to one times the column diameter is sufficient to allow a 

plastic hinge to be developed in the column. The pile embedment length of 1.5 times 

the depth of pile is also sufficient to maintain the fixity of the pile pocket connection. 

 Foundation flexibility produced a significant effect on the system response. About 

40% of column top displacement was due to the foundation flexibility prior to the 

development in elastic strain in the column. As the damage progressed in the column, 

the foundation flexibility caused less effect to the total column top lateral 

displacement, while it still accounted for an important component when the effective 

lateral load reached its maximum. 

 The constructability advantages of the prefabricated column-pile cap-pile system are 

that it is quick and simple to build. The precast column and precast pile cap with no 

projected reinforcement are easy to build and transport and are unlikely to be 

damaged during construction. Given the friction collar and grout with desirable 

characteristics (including high-early-strength, extended working time, and 

appropriated fluid consistency), the assembly of a column-pile cap-pile system can be 

completed within one day. 
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Abstract 

A large-scale load test was conducted on a pile group at a stiff clay site. The pile 

group consisted of eight steel H-piles, with a battered pile at each corner. To evaluate a new 

Accelerated Bridge Construction foundation design concept, a precast pile cap was connected 

to the piles by embedding the pile heads into preformed pockets. The pile group was tested 

under different combinations of vertical and lateral loads. The magnitude of the loads as well 

as the height of the lateral loads were varied to produce different overturning moment-to-

lateral load ratios. The pile group exhibited significant resistance to the combined vertical 

and lateral loads, and the battered piles behaved differently from the vertical piles, as 

expected. A numerical model with nonlinear springs representing soil resistance was 

developed to further investigate the battered pile behavior. Good agreement was achieved 

between the measured and computed pile group behavior. The analytical results showed that 
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the battered piles were subjected to larger axial forces but smaller bending moments than the 

vertical piles. 

Keywords: Pile group; Battered pile; Precast pile cap; Pocket connection; Load test; Vertical 

load; Lateral load; Numerical model; Accelerated Bridge Construction (ABC). 

Introduction 

Piles are most often used in groups and capped by a pile cap to support 

superstructures. In addition to vertical loads transferred from the superstructures, pile groups 

are often simultaneously subjected to lateral loads caused by soil pressures, earthquakes, high 

winds, vessel and vehicular collisions, ice impacts, etc. In many cases, lateral loads are 

applied on a structural component above the pile cap and transferred to the pile group 

through the pile cap. As a result, an accompanying overturning moment is induced if a fixed 

connection is used between the structure and pile cap. However, because of the high cost and 

logistical difficulty of conducting load tests on pile groups, relatively few large-scale load 

tests are available that show the behavior of pile groups under combined vertical and lateral 

loads. McCabe and Lehane (2006) performed a vertical load test on a group of five precast 

concrete piles in soft clayey silt. Brown et al. (1987), Rollins et al. (1998), and Rollins et al. 

(2005) tested 3 × 3 pile groups, in which the piles were laterally loaded using a load frame 

that employed moment-free connections to each pile. Rollins and Sparks (2002), Mokwa and 

Duncan (2001), and Richards et al. (2011) conducted lateral load tests on pile groups capped 

by concrete pile caps. These pile-group tests were conducted under either vertical load or 

lateral load, and thus did not fully represent the lateral loading conditions for actual pile 

groups, as the vertical structural load was missing. In addition, the tests directly applied the 

lateral loads to the pile caps rather than through structural columns, which neglects the 

accompanying overturning moments acting on the pile cap.  
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To improve the understanding of pile group behavior under more realistic loading 

conditions, a large-scale pile group consisting of eight steel H-piles was tested under 

combined vertical and lateral loads in a natural soil profile in this study. As precast 

components have been widely implemented in recent years (Culmo 2011), a precast pile cap 

was used, which was connected to the piles by embedding the pile heads into preformed 

pockets. Along with static vertical loads, cyclic lateral loads were applied at the different 

heights above the pile cap to induce various combinations of vertical load, lateral load, and 

overturning moment on the pile cap. 

In addition to the behavior of the pile group, another focus of this experimental study 

was the behavior of the battered piles in the pile group. Battered piles have been used for 

many decades to resist lateral loads from soil pressures, winds, and impacts. They transmit 

the applied lateral loads partly through axial force, thereby providing higher lateral stiffness 

than vertical piles of the same size. However, due to their poor performance in past 

earthquakes, battered piles are currently not recommended for resisting seismic lateral loads 

(Lund 2003). The primary causes for historical poor seismic performance of battered piles 

include inadequate strength of the piles and improper design of the pile connections 

(Giannakou et al. 2010). These deficiencies tend to be the direct consequences of the design 

assumption that the pile connections were pinned and thus transferred only axial and lateral 

force but zero moment. However, even though the piles were embedded a short distance into 

the pile cap to intentionally create a pinned condition, the pile connections developed 

considerable moment resistance and failed in a brittle manner (Xiao et al. 2006). With this 

understanding of the causes of poor performance, it was suggested that for withstanding large 

lateral loads, design of battered piles should be based on the fixed-head assumption, and both 
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the battered piles and their connections to the pile cap need to provide sufficient strength 

(Kavazanjian 2006).  

H-piles with deep embedment into pile caps have exhibited potential for use as 

battered piles subjected to seismic lateral loads (Shama et al. 2002), but their performance 

needs to be evaluated in the field. To address these concerns, the four corner piles in the pile 

group in this study were battered to examine their performance experimentally through the 

large-scale load test. This paper presents the primary results of the pile group test. The 

behavior of the tested pile group, especially the battered pile behavior, was also investigated 

through numerical analyses. This paper also outlines the development of the numerical model 

and compares the numerical and experimental results. 

Pile Group Test 

Geotechnical Site Conditions 

The previous Spangler Geotechnical Laboratory site at Iowa State University was 

chosen for the pile group test. The subsurface was characterized using the standard 

penetration test (SPT) and cone penetration test (CPT), which were terminated at a depth of 

15 m (50 ft) below the ground surface. The soil profile determined from the in situ tests is 

shown in Figure 5.1. It primarily consists of stiff clays, with a 1.5-m (5-ft) thick sand layer at 

a depth of approximately 11 m (35 ft). During the time of testing, the ground water table was 

at a depth of approximately 2.3 m (7.5 ft). 
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Figure 5.1  Soil profile along with SPT and CPT data from the test site 

Pile Group Layout 

The pile group consisted of eight steel piles, which were capped by a precast pile cap 

supporting a precast column with a loading block on its top. Another loading block was cast 

on top of the pile cap for applying lateral loads close to the pile cap. The piles were U.S. W 6 

× 20 beams and were driven to a depth of 15 m (50 ft) below the ground surface. The pile 

steel conformed to ASTM A992 Grade 50 specifications. According to the mill test report, 

the yield strength of the piles was 370 MPa (53.5 ksi) based on the 0.2% offset criteria, and 

the ultimate strength was 499 MPa (77.3 ksi). As shown in Figure 5.2a, the piles were 

arranged in a 3-2-3 pattern, and the four corner piles (i.e., Piles A1, A3, C1, and C3) were 

battered at a slope of 1 horizontal to 6 vertical. The nominal center-to-center spacing between 

the piles at the height of the pile cap base was 0.61 m (2 ft). Because piles with a high 

slenderness ratio may buckle during driving, each 15-m (50-ft) pile was constructed starting 

from two 9-m (30-ft) long segments. After the first 9-m (30-ft) long segments were driven 

into the ground, the second 9-m (30-ft) segments were spliced by full penetration groove 
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welds and subsequently driven. Once the designed pile penetration depth was reached, the 

extra length was cut at 0.53m (1.75 ft) above the ground. Plugging of the top layer of soil 

was observed during driving of the piles, developing plugging holes inside the flanges of 

each pile to an average depth of roughly 0.61 m (2 ft).   

The precast pile cap was 1.83 m (6 ft) by 1.83 m (6 ft) in plan and 0.61 m (2 ft) thick. 

As seen in Figure 5.2b, eight fully penetrated pockets were preformed on the pile cap for 

connecting the cap to the piles. The pockets were created using corrugated steel pipes, which 

were topped by steel cones to ensure satisfactory distribution and spacing of the mat 

reinforcement at the top of the pile cap. Considering the construction tolerances and 

geometry of the battered piles, the nominal inside diameter of the corrugated steel pipes was 

selected to be 457 mm (18 in.). Following routine design practices (Iowa DOT 2018) and 

findings from previous studies (Shama et al. 2002; Xiao et al. 2006), a pile embedment 

length of 229 mm (9 in.) was selected, corresponding to 1.5 times the depth of the pile’s 

cross-section. After placing the pile heads into the pockets, the bottom openings of the 

pockets were sealed, and the pockets were then filled with self-consolidating concrete to 

establish the pile-to-pile cap connections. The pile cap was positioned at 0.30 m (1 ft) above 

the ground to eliminate contact pressures acting on the pile cap, and to provide access to the 

bottom of the pile cap for test observation and instrumentation purposes. More details about 

the precast pile cap and pocket connection can be found in Cheng and Sritharan (2019). 

The precast column was inserted into the socket that was preformed in the precast pile 

cap, and the surrounding void was filled with high strength grout. The loading block formed 

on top of the column allowed the lateral load to be applied at a height of 2.13 m (7 ft) above 

the top of the pile cap in test Phases I and II. The second loading block cast above the pile 
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cap and surrounding the column base was used for applying lateral loads at 0.30 m (1 ft) 

above the top of the pile cap in test Phases IIIVI, as seen in Figure 5.2c. 

   
(a) (b) (c) 

Figure 5.2  Pile group layout: (a) pile configuration; (b) pile cap, column, and loading 

blocks; (c) photograph of the pile cap and loading blocks 

Test Setup 

A reaction frame and a reaction column were constructed at the test site for applying 

vertical and lateral loads to the pile group, respectively. The reaction frame was anchored by 

four U.S. HP 14 × 73 steel piles driven to 15 m (50 ft) below the ground. As shown in Figure 

5.3a, four hollow hydraulic cylinders in the reaction frame pushed the main reaction beam 

down, thereby applying vertical loads to the test piles while subjecting the anchor piles to 

tension. A friction pendulum bearing was installed between the reaction beam and the 

column loading block. This bearing was used to transfer vertical load, while allowing 

translation and rotation of the pile cap. The lateral reaction column consisted of five precast 

concrete segments and a 1.8-m (6-ft) diameter, 12-m (40-ft) deep drilled shaft foundation, 

which were connected using four post-tensioned rods anchored into the drilled shaft. A 

double-acting hydraulic actuator was attached between the reaction column and loading 
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block. As seen in Figure 5.3b, the actuator was positioned at two different heights for 

applying the lateral load at either 2.13 m (7 ft) or 0.30 m (1 ft) above the top of the pile cap in 

the different test phases. 

  
(a) (b) 

Figure 5.3  Test setup: (a) reaction frame; (b) reaction column 

Load Protocol 

The pile group test consisted of six phases to examine the pile group response under 

different combinations of vertical and lateral loads. As detailed in Figure 5.4, in each phase, 

following the application of a constant vertical load, the push (positive) and pull (negative) 

loads were applied cyclically in the horizontal direction. In each phase, the positive and 

negative lateral loads were gradually increased in multiple levels up to the target maximum 

amplitude, with three full cycles at each loading level. The peak load was held constant for 

about 5 min. in the first cycle of each loading level. In some levels, this load-holding period 

was longer to enable inspecting of the pile group and documenting of observations.  

For Phase I and Phase II, the vertical load was targeted at 1,112 kN (250 kip) and 445 

kN (100 kip), respectively. The target maximum lateral load of Phase I was equal to 5% of 
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the vertical load, and the lateral load in Phase II was gradually increased until a plastic hinge 

formed in the column. As previously noted, the lateral load of the first two phases acted at 

2.13 m (7 ft) above the top of the pile cap to produce a high overturning moment-to-lateral 

load ratio. In the subsequent phases, the lateral load was lowered to 0.30 m (1 ft) above the 

top of the pile cap to reduce the moment-to-load ratio. For Phase III, the target vertical load 

was 1,112 kN (250 kip), and the target maximum lateral load was ±623 kN (±140 kip). For 

Phase IV, the target vertical load was reduced to 445 kN (100 kip), and the target maximum 

lateral load was 979 kN (220 kip). However, the applied negative lateral load was limited by 

the actuator capacity and therefore only achieved an amplitude of -667 kN (150 kip). Phase V 

and Phase VI were conducted to test the pile group under extreme loading conditions. The 

target vertical load for Phase V was 1,112 kN (250 kip), and was reduced to 0 kN (0 kip) in 

Phase VI. The maximum applied lateral loads for Phase V and Phase VI were 1,001 kN (225 

kip) and -667 kN (-150 kip), respectively. 
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Figure 5.4  Load protocol for test Phases I through VI 

Test Observations 

For the duration of Phase I and II, no damage was observed on the piles, pile cap, or 

their connections. During Phase III, when the lateral loads reached 623 kN (140 kip) in 

positive and negative directions, cracks appeared in the connections of the two straight Piles 

A2 and C2 in succession, but no damage occurred in the other pile-to-pile cap connections. 

The crack adjacent to Pile A2 expanded as the positive lateral loads exceeded 712 kN (160 

kip) during Phase IV (Figure 5.5a). Under the maximum lateral load applied during Phase 

IV, yielding was visible on the flanges of Pile B1 and B3 (Figure 5.5b), and two battered 

Piles C1 and C3 slightly pulled out from the pile cap. The high vertical load of Phase V 
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induced additional compression in the piles, thereby impeding the progression of tensile 

damage in the pile-to-cap connections. Under the combination of the zero vertical load and 

1,001-kN (225-kip) lateral load in Phase VI, the connections of battered Piles C1 and C3 

failed in tension (Figure 5.5c), one flange of Pile A1 and A3 buckled (Figure 5.5d), and 

rotation of Pile B1 and B3 was visible (Figure 5.5e). The formation of gaps between the piles 

and cohesive soil initiated from Phase II, and the gap width continually grew as the pile 

group was subjected to cyclic loads in subsequent phases. As shown in Figure 5.5f, the 

maximum permanent gap at the end of Phase VI was approximately 152 mm (6 in.). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.5  Observations: (a) crack in the connection to pile A2; (b) yielding of pile B3; (c) 

pull out of pile C3; (d) buckling of pile A3; (e) rotation of pile B1; (f) gap next to pile C2 

Load-Displacement Response 

The load-displacement responses for the pile group during the different test phases 

are shown in Figure 5.6, which contains the lateral load transferred to the pile cap versus the 
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displacements measured at the mid-depth of the pile cap. For ease of comparison, the plots 

are presented with the same scales for both axes. The load-displacement response remained 

linearly elastic for the duration of Phase I and II. The backbone of the response for Phase III 

was approximately linear, whereas the responses during individual loading cycles exhibited 

slight nonlinearities. This phenomenon was due to the formation of permanent gaps between 

the piles and cohesive soil. When the pile group first reached a given displacement, the 

applied lateral load was resisted by the pile stiffness and soil pressure. As the load on the pile 

group was cycled, gaps developed next to the piles. For pile displacements less than the 

width of the gap, the resistance is only due to the pile stiffness. As the piles approached the 

previous maximum displacement, the piles engaged the soil which progressively provided 

additional resistance, causing the observed increase in the stiffness of the load-displacement 

response of the pile group.  

For Phase IV, the response under negative load was similar to that for the last loading 

step of Phase III, but the displacement slightly increased due to progressive plastic failure of 

the soil as the load on the pile group was cycled at the same negative load level. When the 

positive lateral load of Phase IV exceeded 551 kN (124 kip), the slope of the response 

backbone gradually decreased, which was mainly associated with yielding of the piles and 

damage in the pile-to-pile cap connections. Creep under constant load occurred during the 

load-hold periods of the positive loading levels of 810 kN (182 kip), 890 kN (200 kip), and 

916 kN (206 kip) for Phase IV.  

During Phase V, as the high vertical load induced additional compression in the piles, 

no further significant damage was observed, and the hysteresis responses for the three cycles 

of each loading level were stable. An exception was the last loading step, in which soil creep 
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occurred during the load-holding period. As evidenced by the tensile failure of the pile 

connections and buckling of the piles documented at the end of test, the reduction of vertical 

load in Phase VI triggered failure of the pile group, causing the continuous increase of lateral 

displacement under a sustained lateral load of 1,001 kN (225 kip). 

 

Figure 5.6  Measured lateral load-displacement responses for pile group 

Moment-Rotation Response 

The lateral load applied above the pile cap produced overturning moments acting on 

the pile cap in all loading phases of the test. The relationships between the overturning 

moment and pile cap rotation are presented in Figure 5.7. For the duration of Phase I, the 

moment-rotation response remained linearly elastic. As the gap formed between the piles and 

soil during Phase II, the moment-rotation response exhibited some nonlinearity but remained 
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elastic. Following the first two phases, the height of lateral load was lowered from 2.13 m (7 

ft) to 0.30 m (1 ft) above the top of the pile cap. As a result, the overturning moment-to-

lateral load ratios for the subsequent phases were significantly lower than those for Phases I 

and II, causing noticeable reductions in the slopes of the moment-rotation responses. 

During Phase III, the moment-rotation response exhibited increasing amounts of 

nonlinearity as the pile-to-soil gaps expanded. Subsequent to the moment reaching 265 kN-m 

(2,345 kip-in.) in Phase IV, the slope of the moment-rotation response backbone decreased, 

and the hysteresis loop widened. This degradation was associated with damage occurring in 

the piles and pile-to-pile cap connections, especially pull-out of the battered Piles C1 and C3. 

For Phase V, the nonlinearity of the moment-rotation response became more pronounced as 

the gaps around the piles continually grew. The high vertical load of this phase impeded the 

progression of tensile damage in the pile connections, and thus maintained a stable hysteretic 

response. With the vertical load reduced to zero in Phase VI, tension failure of the 

connections caused the significant deterioration in the moment-rotation response. 
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Figure 5.7  Measured moment-rotation responses for pile group 

Analysis Approach 

Numerical Model 

The behavior of the pile group was further investigated analytically using a three-

dimensional numerical model developed using the computer software SAP 2000. For the 

numerical model, the concrete material properties were defined following the Mander 

unconfined concrete model (Mander et al. 1984) with a compressive strength of 39.9 MPa 

(5.79 ksi), corresponding to the measured concrete strength for the precast pile cap. The steel 

stress-strain curve was formulated following the detailed model suggested by Lee et al. 

(2015) with a yield strength of 370 MPa (53.5 ksi) and ultimate strength of 499 MPa (77.3 

ksi). As shown in Figure 5.8a, the loading blocks and the column were modeled with rigid 
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beams to simplify the model. The pile cap was modeled using elastic concrete shell elements 

with a thickness of 0.61 m (2 ft), and its geometry was reproduced by the rigid links assigned 

on the top and bottom of the shell elements. Each steel pile was represented by an elastic 

beam-column element with two concentrated fiber hinges capturing inelastic damage in the 

pile and the pile-to-pile cap connection. Based on a nonlinear analysis of the single pile 

subjected to lateral load, the hinges were assigned at the top of the pile and at 1.1 m (3.75 ft) 

below the ground surface, where the maximum bending moment occurred. The response of 

the hinges was characterized by integrating the stress-strain relation of uniaxial steel fibers 

on the pile section (Figure 5.8b) over a hinge length that was taken to be 0.5 times the depth 

of the pile’s cross-section.  

To represent the combined effects of pile yielding and connection damage at the top 

of the piles, various models were evaluated for defining the hysteresis behavior of individual 

fibers of the top hinge. Based on the results, the pivot model (Dowell et al. 1998) with the 

following parameters was selected, as it best matched the measured response: α1 = 2, α2 = 2, 

β1 = 0.5, β2 = 0.5, and η = 0. The fibers for the in-ground hinges were defined following a 

kinematic hysteresis model for capturing only the nonlinear behavior of the steel piles. Zero-

length uniaxial nonlinear springs were assigned for connecting the piles to the pile cap. The 

purpose of these springs was to model pull-out of the piles from the pile cap, for which their 

force-displacement relation as well as hysteresis response were defined as shown in Figure 

5.8c, where A = area of pile section, D = depth of pile section, E = modulus of elasticity of 

pile steel, and fy = yield strength of pile steel. 
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(a) (b) (c) 

Figure 5.8  Model of pile group: (a) schematic of the model; (b) fiber layout for concentrated 

hinge; (c) behavior of zero-length spring 

The soil profile used for the analysis was idealized into six layers. For each layer, the 

soil properties were determined from correlations to the CPT data measured at the test site 

(Mayne 2007). Table 5.1 summarizes the soil properties for the different layers. The soil 

around the piles was modeled as a set of springs having prescribed p-y and t-z curves. The p-

y curves represent the lateral soil resistance as a nonlinear function of pile lateral 

displacement, and the t-z curves characterize the nonlinear relation of soil vertical resistance 

to the pile vertical displacement. Given the various soil types and conditions of the soil 

layers, different empirical formulations were employed to establish the p-y and t-z curves at 

the different depths. The sources for the p-y and t-z formulations used are listed in Table 5.1.  

In order to capture the formation of the gaps between the piles and cohesive soil when 

the piles were subjected to cyclic loads, compression-only p-y springs with the Takeda 

hysteresis model (Takeda et al. 1970) were assigned on four sides of the pile elements, as 

illustrated in Figure 5.9. The t-z springs were defined to provide both compressive and tensile 
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resistances and follow the Takeda hysteresis model. For the four battered piles at the corners 

of the group, the outside and inside p-y springs were modified using the soil resistance 

modifying factors of 1.20 and 0.86, respectively, as suggested by Reese (1958), to account 

for the effects of pile batter. To account for the effects of the holes caused by pile plugging 

during driving, as well as group effects and the uncertainty of the idealized soil resistance 

prescribed by empirical formulations, a p-multiplier of 0.25 was applied to the p-y springs 

representing the top 0.61-m (2-ft) of the soil profile, and the t-z springs were adjusted by a t-

multiplier of 0.9 and a z-multiplier of 2.75. The multiplier values were determined through a 

trial and error procedure, by performing repeated analyses with different multipliers until a 

reasonable agreement was obtained between the measured and computed pile group 

response. 
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Table 5.1  Soil Properties, p-y Curves, and t-z Curves Used for Numerical Analyses 

Depth below ground Effective unit 

weight 

(kN/m3) 

Undrained Cohesion 

(kPa) 

Friction angle 

(degrees) 
p-y curve type t-z curve type Top 

(m) 

Bottom 

(m) 

0 2.29 17.28 47.9 — 
Stiff clay w/o free water 

(Welch and Reese 1972) 

Driven pile in clay 

(API 2002) 

2.29 7.01 8.26 186.7 — 
Stiff clay with free water 

(Reese et al. 1975) 

Driven pile in clay 

(API 2002) 

7.01 7.62 10.62 651.2 — 
Stiff clay with free water 

(Reese et al. 1975) 

Driven pile in clay 

(API 2002) 

7.62 10.06 8.26 244.2 — 
Stiff clay with free water 

(Reese et al. 1975) 

Driven pile in clay 

(API 2002) 

10.06 11.58 11.40 — 36 
Sand 

(Reese et al. 1974) 

Driven pile in sand 

(API 2002) 

11.58 16.76 10.62 306.4 — 
Stiff clay with free water 

(Reese et al. 1975) 

Driven pile in clay 

(API 2002) 

1
3
4
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Figure 5.9  Nonlinear springs representing soil resistances 

Model Validation 

The pile group load-displacement and moment-rotation responses computed using the 

numerical model are compared to the measured responses in Figure 5.10a and Figure 5.10b, 

respectively. These comparisons show that the numerical model satisfactorily captures both 

stiffness and hysteresis characteristics of the pile group under the different combinations of 

vertical and lateral loads. The errors in terms of displacement and rotation were attributed to 

the effects of creep, which were not taken into account for the soil nonlinear springs. 

Furthermore, the measured and computed axial forces and bending moments at the heads of 

Piles A2, A3, and B1 for the duration of the Phase II test are presented in Figure 5.11a and 

Figure 5.11b as a function of the overturning moment acting on the top of the pile cap. The 

results show a reasonably good agreement in light of the simplifications adopted.  
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(a) (b) 

Figure 5.10  Comparison of measured and computed (a) load-displacement and (b) moment-

rotation responses 

Figure 5.12 shows the computed pull-out of Piles C1 and C2 during Phase IV as a 

function of overturning moment. These computed responses indicate that the vertical Pile C2 

experienced no pull-out during Phase IV, whereas the battered Pile C1 began pulling out 

from the pile cap when the applied overturning moment reached 173 kN-m (1,531 kip-in.), 

and it pulled out by approximately 5.4 mm (0.21 in.) under the maximum overturning 

moment in Phase IV. This computed pull-out behavior correlates well with that observed 

during the pile group test. Because of the good match between measured and computed 

responses at both global and local levels, the numerical model was considered satisfactory for 

capturing the pile group response and soil-foundation-structure interaction in this study. 
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(a) 

 
(b) 

Figure 5.11  Comparison of measured and computed (a) axial force and (b) bending moment 

at pile heads for Phase II 

 

Figure 5.12  Computed pull-out of pile C1 and C2 for Phase IV 

Behavior of Battered Piles 

The available data from the pile group test was inadequate to fully characterize the 

behavior of battered piles. Therefore, the verified numerical model, supplemented by the 

observations from the pile group test, was used to investigate the battered pile behavior. Table 

5.2 summarizes the computed axial force and bending moment at the head of Piles A1, A2, 
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C1, and C2 under the different load combinations, in which the bending moment represents 

the resultant in the loading-direction (i.e., push and pull direction) as defined in Figure 5.2. 

Generally, for piles in the same row (e.g., Piles A1 and A2, or Piles C1 and C2), the lateral 

load induced larger axial forces and smaller bending moments in the battered piles compared 

to the vertical piles, and the magnitude of these effects depended greatly on the height of the 

lateral load. In the vertical-load-only condition, the vertical piles were subjected to higher axial 

forces than the battered piles because the vertical piles have a higher stiffness in the vertical 

direction. For Phase I and II with the lateral load applied at 2.13 m (7 ft) above the top of the 

pile cap, a large overturning moment was produced by relatively small lateral load. The 

overturning moments acting on the pile cap were primarily resisted by vertical reactions of the 

piles, thus, additional compressive forces were induced in Pile A1 and A2, but Pile C1 and C2 

was subjected to less axial compressive forces than those in the vertical-load-only condition. 

The lateral force distributed to the individual piles was small, causing that the bending 

moments at the pile heads were negligible compared to the pile yield moment of 75 kN-m (668 

kip-in.) in the strong-axis direction. The battered piles transmitted the lateral loads partly 

through axial force, and the vertical piles resisted the lateral load mainly through bending 

stiffness. Therefore, the bending moment in the vertical piles were higher than those in the 

battered piles, and the battered piles were subjected to higher axial forces. 
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Table 5.2  Pile Head Axial Forces and Bending Moments 

Test phase 

Vertical 

load 

(kN) 

Lateral 

loada 

(kN) 

Overturning 

moment 

(kN-m) 

Axial forceb 

(kN) 

Bending moment 

(kN-m) 

A1 A2 C1 C2 A1 A2 C1 C2 

Vertical load only 
1112 — — 141 145 141 145 — — — — 

445 — — 59 62 59 62 — — — — 

Phase Ic 1112 67 142 200 192 78 98 0.2 4.0 0.8 2.1 

Phase IIc 445 133 285 185 155 -64 -32 1.4 6.7 1.3 6.0 

Phase IIId 1112 534 163 415 269 -173 23 40 57 40 57 

Phase IVd 445 912 278 575 186 -385 -182 56 89 57 90 

Phase Vd 1112 979 298 603 307 -370 85 55 88 57 95 

Phase VId 0 979 298 517 110 -417 -277 54 89 53 90 
aPositive value indicates push load as defined in Figure 5.2. 
bPositive value indicates compressive force and negative value indicates tensile force. 
cLateral load is applied at 2.13 m above the top of the pile cap. 
dLateral load is applied at 0.30 m above the top of the pile cap 1

3
9
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For Phases III to VI with the lateral load applied at 0.30 m (1 ft) above the pile cap, 

larger lateral loads were applied in order to produce overturning moments comparable to 

those of Phases I and II. Therefore, the piles were subjected to considerable bending 

moments because of the large lateral loads. The vertical piles experienced larger moments 

than the battered piles, as evidenced by the observations that the cracks first appeared in the 

connections to vertical Piles A2 and C2. In contrast, the axial forces in the battered piles were 

considerably larger than those in the vertical piles because the battered piles transmitted the 

applied lateral loads to axial force. In Phase IV, the lateral load induced a tensile force in the 

battered Pile C1 that was almost double the force in the vertical Pile C2, causing the 

observed pull out of the battered piles in the pile group test. The high vertical load in Phase V 

imposed greater compressive forces on the piles. A comparison between the pile head axial 

forces for Phase IV and V revealed that the battered piles were less sensitive to the vertical 

load than the vertical piles because the vertical piles provided more resistance to the vertical 

load than the battered piles. When the pile group is only subjected to lateral load during 

Phase VI, the compressive axial force in the battered Pile A1 was roughly 4.7 times the axial 

force in the vertical Pile A2, showing that the effects of pile batter became more prominent. 

Conclusions 

A large-scale pile group test was conducted at a stiff clay site with combined vertical 

and cyclic lateral loads. The pile group consisted of eight steel H-piles capped by a precast pile 

cap. Four piles at the corners of the group were battered at a 1 horizontal to 6 vertical slope. 

The precast pile cap was connected to the piles by embedding the pile heads into the pockets 

that were preformed using corrugated steel pipes. For the different phases of the load test, the 

magnitudes of the vertical and lateral loads were varied, and the lateral loads were applied at 

two different heights to produce various overturning moment-to-lateral load ratios. A 
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numerical model was developed to better understand the behavior of the test pile group. Based 

on the results of the experiments and numerical analyses, the following conclusions can be 

drawn: 

 The pile group exhibited significant resistance to the combined vertical and 

lateral loads. Under the load combinations with high pile cap overturning 

moment-to-lateral load ratios, the bending moments at the pile heads were 

negligible, and the applied loads were primarily resisted by the vertical 

reactions provided by the piles. When the overturning moment-to-lateral load 

ratio was reduced, considerable bending moments were also developed at the 

pile heads. 

 The precast pile cap exhibited satisfactory performance and remained 

essentially undamaged under the different combinations of vertical and lateral 

loads. Sufficient pile-to-pile cap connections were established by embedding 

the pile heads into the preformed pockets. With the embedment length of 1.5 

times the cross-section depth of the piles, the connections developed 

considerable resistance to the axial forces and bending moments imposed on 

the piles. Under the extreme lateral loads, the piles pullout due to the significant 

tensile forces, and the connections were damaged in a ductile manner. 

 The numerical model adequately captured the behavior of the tested pile group. 

The nonlinear response of the piles and pile-to-pile cap connections was 

accounted for using concentrated hinges and zero-length springs assigned to the 

pile elements. The soil resistances were represented by nonlinear springs 

characterized by p-y and t-z curves. These nonlinear curves developed from 
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empirical formulations were adjusted using multipliers to account for the effects 

of the pile batter, plugging holes surrounding the piles, and pile group 

interaction. 
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Abstract 

This paper presents the controlled rocking pile foundation (CRPF) system and 

numerically investigates its seismic response. The CRPF system allows the pile cap to rock 

on the pile foundation and dissipates seismic energy through the inelastic deformations of the 

replaceable bar fuses connecting the pile cap and piles. Following the conceptual design of 

the CRPF system, two analytical models were developed for a bridge pier utilizing the CRPF 

system and a pier designed to develop a plastic hinge in its column. Both the two models 

were subjected to the static cyclic loads, dynamic free vibrations, and earthquake ground 

motions. The results indicated that, after experiencing a severe earthquake, the 

conventionally designed bridge pier sustained substantial damages in the column and 

exhibited significant residual displacement. In contrast, the pier with the CRPF system 

showed negligible residual displacement and maintained elastic behavior except the bar fuses 

as expected. The damaged fuses can be rapidly replaced to recover the bridge seismic 

resistance after the earthquake. Therefore, the CRPF system offers the feasibility to achieve 

mailto:sri@iastate.edu
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the desired seismic performance objectives including immediately openings after an 

earthquake, shorter repair times, and lower repair costs. 

Keywords: Bridges; Seismic design; Precast; Pile foundation; Controlled rocking; 

Repairable; Seismic resilience. 

Introduction 

Conventional bridge seismic design relies on the formation of ductile plastic hinges in 

preselected locations to dissipate seismic energy and protect bridges from collapse. Although 

bridges designed in this manner are generally considered to provide adequate safety, they 

often sustain excessive damages and exhibit considerable residual drifts following major 

seismic events. Damaged bridges can disrupt traffic, necessitate time-consuming inspections, 

and may be difficult and financially prohibitive to repair. Addressing these issues, new 

design strategies and technologies are required to achieve additional seismic performance 

objectives such as mitigating economic losses, maintaining bridge functionality, and 

improving reparability. 

Structures with rocking mechanisms offer the potential to achieve the aforementioned 

seismic performance objectives. Even experiencing large nonlinear deformation for the 

duration of shaking, rocking structures can suffer less damage and recenter after high-

intensity earthquake ground motions. Housner (1963), Meek (1975), Chopra and Yim (1985), 

Acikgoz and DeJong (2012), and Kalliontzis et al. (2016) investigated the fundamental 

rocking dynamics of rigid and flexible structures. In light of their findings, numerous efforts 

have been made to develop rocking structures. Priestley et al. (1999), Restrepo and Rahman 

(2007), and Sritharan et al. (2015) developed unbonded posttensioned precast rocking walls 

with additional hysteretic energy dissipaters, in which the prestressing tendons at the center 

of the wall panels provide the restoring force to recenter the systems. The concept of 
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posttensioning has been extended to bridge columns (Hewes and Priestley 2002; Chou and 

Chen 2006; Restrepo et al. 2011). Precast columns with internal unbonded prestressing 

tendons were designed to rock at their end joints, and additional hysteretic energy dissipaters 

were provided through internal partially debonded longitudinal bars made of high-

performance steel or shape-memory alloy crossing the joints (Wang et al. 2008; Ou et al. 

2010; Roh and Reinhorn 2010) or external attached links (Marriott et al. 2009; Guo et al. 

2015).  

Utilizing the weight of superstructures as the recentering force, bridges with columns 

supported on shallow foundations would mobilize rocking behavior at their footings. Mergos 

and Kawashima (2005) and Deng et al. (2012) numerically studied the seismic response of 

bridges with rocking shallow foundations using the nonlinear Winkler-foundation model. 

Saidi et al. (2002), Espinoza and Mahin (2008), and Antonellis et al. (2015) conducted shake 

table tests to study the response of bridge columns supported on rocking shallow foundations. 

These studies reveal the merits of the rocking shallow foundation (e.g., recentering capacity, 

significant energy dissipation, well-defined moment capacity, etc.), but the concerns of this 

type of system include relatively low bearing capacity, the potential settlement and residual 

rotation due to the permanent deformation of underlying soils, and the difficulty of repairing 

after an earthquake (Gajan and Kutter 2008; Allmond and Kutter 2014). Several studies 

demonstrated that the foundations supported on the unattached piles (i.e., no tension is 

transferred from the pile caps to the piles) can obtain the beneficial rocking mechanisms with 

less concern regarding the soil conditions. Allmond and Kutter (2012; 2013) conducted 

centrifuge tests to explore the behavior of the rocking foundation on unattached piles. 

Antonellis and Panagiotou (2014) numerically analyzed the bridges with rocking pile 
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foundations subjected to earthquake ground motions. Guan et al. (2018) tested a large-scale 

pile foundation model allowing rocking of the pile cap, evidencing the feasibility of rocking 

pile foundation. 

In order to complement the rocking systems and facilitate their uniform application in 

bridges, a new controlled rocking pile foundation (CRPF) system was developed. The CRPF 

system extends the concept of rocking pile foundation and uses replaceable bar fuses 

connecting the piles to the pile cap. When subjected to a strong earthquake ground motion, 

the fuses dissipate seismic energy by undergoing inelastic deformations, and the system is 

capable of preventing major structural damage and eliminating residual drifts through 

rocking on top of the piles. Following an earthquake event, bridges can immediately open to 

normal use as the structural components transferring service loads experience little or no 

damage, and the seismic resistances of the bridges can be rapidly recovered by replacing the 

fuses. Moreover, the CRPF system is suitable for implementing prefabricated technologies, 

thus offering additional benefits such as reduced onsite construction time, minimized 

mobility and environmental impacts, improved product quality, and more (Culmo 2011). 

Rocking Mechanism of the CRPF System 

Figure 6.1 illustrates the rocking mechanisms of the CRPF system during a loading 

cycle in terms of lateral load (F) versus the column drift (Δ) as well as the axial force of the 

fuse (Ff) versus the fuse elongation (Δf). For the duration of loading, the CRPF system first 

experiences a small elastic deformation. As the lateral load achieves the decompression force 

(Fd), the axial forces on the piles that are underneath the one side of the pile cap are 

decompressed (Figure 6.1a). The pile cap starts to uplift from the decompressed piles and 

rotate about the piles on the opposite side. Consequently, the fuses fastened between the pile 

cap and the decompressed piles are stretched in tension, which would remain elastic until the 
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force in the fuses reaches it yield value (Ff,y) (Figure 6.1b). For increasing uplift, the fuses 

undergo plastic deformation and dissipate energy. The yielding of the fuses causes the 

softening of the system lateral load response, thus the column experiences a large drifts 

without a significant increase in lateral load (Figure 6.1c). During the unloading, the uplift of 

the pile cap decreases leading to compressive yielding in the fuses (Figure 6.1d). The 

superstructure weight (W) eventually recenters the system. As the pile cap sets back to the 

piles, the fuses reach zero displacement and develop residual compressive stresses (Figure 

6.1e). 

 
(a) (b) (c) (d) (e) 

Figure 6.1  Rocking mechanism of the CRPF system: (a) decompression; (b) fuse tensile 

yielding; (c) fuse plastic elongation; (d) fuse compressive yielding; and (e) recentering 
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Conceptual Design of the CRPF System 

A CRPF system consists of bored or driven piles, a precast pile cap supported on the 

piles, and bar fuses connecting the piles and pile cap. Shallow sockets are preformed on the 

bottom of the precast pile cap, and the piles are placed into these sockets to transfer lateral 

forces. For ease of installation and replacement, the fuses are fastened using the threads at 

their ends. In order to anchor the threaded splicing couplers fastening the fuses and create the 

pile head with the shape and position precisely fitting the preformed sockets, a cast-in-place 

(CIP) concrete pile head is needed for each pile. Figure 6.2 illustrates the possible details of 

the pile head for different types of piles. Among all these details, the steel tube serves as the 

stay-in-place formwork and provides confinement to protect the pile head from local damage. 

The bored piles need to extend longitudinal reinforcements into the pile head (Figure 6.2a). If 

the steel H-piles are used, a slot is cut on the web of the pile to allow the splicing coupler 

being placed. The tensile force from the coupler is transferred to the pile through the shear 

studs welded on the pile (Figure 6.2b) or by directly welding the coupler to the pile using the 

mending plates (Figure 6.2c). The slots are also needed for the steel pipe piles to provide 

access to weld the shear studs at the inside of the pipe, which are for transferring the tensile 

force to the pile. The sealing pad prevents the concrete from filling into the pile (Figure 

6.2d). For the concrete driven piles (Figure 6.2e), the splicing couplers can be anchored in 

the hole reserved on the pile top. To ensure full contact between the pile head and pile cap 

and achieve fast construction, the pile cap is put in place right after pouring the concrete into 

the steel tube. Prior to the concrete reaching the sufficient strength, the weight of the pile cap 

can be temporarily carried by: (1) the extended pile reinforcements braced by spiral 

reinforcement that is securely fastened (or welded) to the extended reinforcements; (2) the 
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top of the steel H-pile; (3) the top of the steel pipe pile; or (4) the supporting bolts embedded 

or screwed in the reserved holes on the concrete pile, depending on the type of piles. 

   
(a) (b) (c) 

 

  
(d) (e) 

Figure 6.2  Pile head details for (a) bored pile; (b) steel H-pile with shear studs; (c) steel H-

pile with wielded mending plates; (d) steel pipe pile; (e) driven concrete pile 

The bar fuses pass through the vertical voids that are created in the precast pile cap 

and screwed into the threaded splicing couplers embedded in the pile heads. To allow the 

fuses yield in tension and compression, the “pinned” connections are required to fasten the 

fuse to the pile cap. Figure 6.3 shows two possible connection details, namely the threaded 

pipe connection and plate nut connection. The threaded pipe connection embeds a pipe with 

external and internal threads on top of the void. The external threads ensure that the pipe is 

sufficiently anchored in the pile cap, and the internal threads are for fastening the threaded 

insert. The top of the fuse passes through the plain hole in the center of the threaded insert 
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and is fastened to the insert by two nuts on the top and bottom of the threaded insert. The 

protecting cap on top of the void keeps the pipe, insert, and nuts free of corrosion. 

Alternatively, the plate nut connection screws a plate nut to the fuse. A cap plate is bolted to 

the pile cap using the threaded rods embedded in the pile cap. The plate nut bears on the pile 

cap, and the cap plate compresses the plate nut, thereby fastening the top of the fuse to the 

pile cap. Both two connections are detachable, which allows easy replacement of the fuses 

following a major earthquake. In case of extraordinarily required long fuses, the pile cap can 

be made with bumps (Figure 6.4) to accommodate the fuses without any significant increase 

in the thickness of the pile cap. 

 

Figure 6.3  Connections fastening fuse to pile cap 

 

Figure 6.4  Pile cap with bumps 
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Fuses used within the CRPF system are made of mild steel bars with the fuse region 

manufactured to a reduced cross-section area. The CRPF system dissipates seismic energy 

mainly through the yielding of the fuses in tension and compression. After evaluating 

different types of fuses, the groove type buckling-resisting bar fuse (White 2014) is identified 

to be appropriate for the CRPF system. This type of fuse features a mild steel bar with a 

number of grooves milled along its length, a steel confining tube placed over the grooved 

bar, and the end connection regions manufactured with threads (Figure 6.5a). The loading 

tests conducted by White (2014) demonstrate the energy dissipation capability of the groove 

type bar fuse when subjected to cyclic tension-compression forces. As a result, the force-

elongation response of the fuse is found to follow the kinematic hardening rule and can be 

characterized as shown in Figure 6.5b, where Af = area of the fuse region of the mild steel 

bar, Ff = force in the bar fuse, fy = yield strength of bar steel, fu = tensile strength of bar steel, 

Lf = length of the fuse region of the mild steel bar, εy = yield strain of bar steel, εu = ultimate 

strain capacity of bar steel, and Δf = elongation of the bar fuse. For mild steel used as energy 

dissipation component, the PRESSS design handbook (Pampanin et al. 2010) specifies the 

design strain limit of 5%, strain limits of 0.7εu for the Ultimate Limit State (ULS), and 0.9εu 

for the Maximum Credible Earthquake (MCE). 

 
(a) 
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(b) 

Figure 6.5  (a) Configuration (White 2014) and (b) force-elongation response of grooved 

type bar fuse 

Seismic Response of the CRPF System 

The seismic response of the CRPF system was studied through the numerical 

approach. The structures analyzed were a single column bridge pier supported on the CRPF 

system (CRPF pier) and a bridge pier with a similar geometry to the CRPF pier but designed 

to form a flexural plastic hinge at the column base (PH pier). The three-dimensional (3D) 

numerical models of the CRPF and PH piers were developed and subjected to the static 

cyclic loads, dynamic free vibrations, and earthquake ground motions, respectively. The 

response of the CRPF pier was compared with that of the PH pier. 

Description of the PH and CRPF Piers 

The PH and CRPF piers were hypothetically located at a cohesive soil site with an 

average undrained shear strength of 96 KPa (2000 psf), which can be classified as competent 

soil according to Caltrans Seismic Design Criteria (SDC) (2019). All components of the piers 

were designed for concrete with a specified compressive strength of 28 MPa (4 ksi) and 

A706M (A706) reinforcing steel with a specified yield strength of 420 MPa (60 ksi). The bar 

fuses in the CRPF pier were made of A572M (A572) steel bars with a specified yield 
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strength of 345 MPa (50 ksi). Figure 6.6 shows the key dimensions adopted for the PH and 

CRPF piers. Both piers consisted of an 11.0-m (36-ft) tall circular column simply supporting 

the superstructure with a weight of 4381 kN (985 kips). The column diameter was 1.8 m (6 

ft), resulting in an axial load ratio of 6%. For the PH pier, the column was reinforced with 

fifty-six #36M (#11) longitudinal reinforcing bars and a #19M (#6) reinforcing spiral at 

spacing of 102 mm (4 in.). The PH pier was supported on a 6.1-m (20-ft) by 6.1-m (20-ft) by 

1.5-m (5-ft) pile cap with nine 22.9-m (75-ft) deep, 0.9-m (3-ft) diameter bored piles. The 

reinforcing steel in each pile consisted of sixteen #25M (#8) longitudinal reinforcing bars and 

#13M (#4) reinforcing hoops at spacing of 152 mm (6 in.). All the column-to-pile cap and 

pile cap-to-pile connections were designed to be fixed, and they were proportioned so the 

joint principle stresses met the Caltrans SDC (2019) criteria for the moment resisting 

connection. 

 
(a) (b) 

Figure 6.6  Key dimensions of (a) the PH pier and (b) the CRPF pier 

In order to achieve comparable response with the PH pier, the CRPF pier was 

designed to provide an elastic lateral force capacity of no less than 1890 kN (425 kips) and 

be capable of reaching a 5% column drift ratio. As illustrated in Figure 6.7a, for the CRPF 
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pier, the lateral force decompressing the pile axial forces, 𝐹𝑑, can be approximated as 

follows: 

 

𝐹𝑑 =  

𝑃
𝑁

∑ 𝑁𝑖𝑑𝑖

𝐿 + 𝐷𝑝𝑐
 

 

Equation 6-1 

where 𝑃 = total axial load on the pile group, 𝑁 = total number of piles in the pile group, 𝑁𝑖 = 

the number of piles in the ith row, 𝑑𝑖 = the distance from the ith row to the exterior row, 𝐿 = 

column height, and 𝐷𝑝𝑐 = depth of the pile cap. 

Given that the CRPF pier was supported on the pile foundation with a geometry 

similar to that of the PH pier (Figure 6.6b), the decompression force was computed to be 

equal to 1170 kN (263 kips). The bar fuses provided additional resistance to allow the CRPF 

pier to reach the target lateral force capacity. As illustrated in Figure 6.7b, the required fuse 

area for each pile, 𝐴𝑓, can be determined by the following equation: 

 
𝐴𝑓 =  

(𝐹𝑦 − 𝐹𝑑)(𝐿 + 𝐷𝑝𝑐)

𝑓𝑦𝑒 ∑ 𝑛𝑖𝑑𝑖
 

 

Equation 6-2 

where 𝐹𝑦 = target lateral force capacity and 𝑛𝑖 = the number of fuses in the ith row. 

For using the single fuse on each pile except the one directly underneath the column, 

the resulting fuse area was calculated to be 1516 mm2 (2.35 in.2), which was provided by a 

57-mm (2.25-in.) diameter steel bar with four grooves milled along the length. 

Drift of the CRPF pier was conservatively assumed to result from uplift of the pile 

cap with respect to the piles (Figure 6.7b), even though the column would experience a small 

elastic deformation. Therefore, to achieve sufficient elongation to accomplish the target drift 

ratio, the required length of the bar fuse, 𝐿𝑓, can be determined as follows: 

 
𝐿𝑓 =  

𝑑𝑝𝜃

0.7𝜀𝑢
 

Equation 6-3 
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where 𝜃 = target drift ratio and 𝑑𝑝 = distance between the exterior rows. 

Assuming that the ultimate strain capacity of the fuse bar steel was 0.17, the resulting 

required length of the bar fuse was computed to be 1.9 m (6.3 ft). Consequently, the CRPF 

pier utilized eight bar fuses with a 2.0-m (6.5-ft) long fuse region, and the pile cap was made 

with the 0.9-m (3-ft) tall bumps to accommodate the fuses. Given that the pile cap uplift with 

respect to the piles was 0.23 m (0.75 ft) for 5% drift ratio, the piles protruded 0.3 m (1 ft) into 

the pile cap, which also provided sufficient bearing area to transfer lateral forces from the 

pile cap to the piles. The column in the CRPF pier was reinforced with seventy-two #43M 

(#14) longitudinal reinforcing bars and a #19M (#6) reinforcing spiral at a spacing of 102 

mm (4 in.) to ensure its elasticity. 

 
(a) (b) 

Figure 6.7  Design of the CRPF pier: (a) decompression force and (b) area and length of the 

bar fuses 

Numerical Model 

The analyses were conducted using the computer software SAP 2000. Figure 6.8 

illustrates the 3D numerical models for the PH and CRPF piers. In the models, the 

superstructure was represented by a concentrated mass, which was connected to the pier 

column using a rigid link. For the PH pier, the column was modeled as an elastic beam-
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column element with the effective moments of inertia approximated based on Caltrans SDC 

(2019). The nonlinear behavior of the column was captured using a concentrated fiber hinge 

assigned at 699 mm (27.5 in.) above the base of the column (i.e., the center of the plastic 

hinge). To define the hinge, the expected material properties according to Caltrans SDC 

(2019) were used, and the concrete and reinforcing steel were modeled following Mander et 

al. (1984) and Caltrans SDC (2019), respectively. The moment-rotation response of the hinge 

was characterized by integrating the stress-strain relation of the uniaxial fibers on the column 

section over a 1397 mm (55 in.) long plastic hinge, which was determined as per Caltrans 

SDC (2019). The pile cap was modeled using the elastic thick shell elements with a thickness 

of 1.5 m (5 ft), and its geometry was reproduced by rigid links assigned on top and bottom of 

the shell elements. The piles were represented by elastic beam-column elements, and the 

lateral and vertical soil resistances to the piles were simulated by a set of nonlinear springs 

prescribed by the p-y and t-z curves, respectively. Given the soil properties and conditions, 

the p-y and t-z curves were established according to the empirical formulations proposed for 

stiff clay without free water (Welch and Reese 1972; API 2002). In order to capture the 

formation of gaps between the piles and cohesive soil when the piles are subjected to cyclic 

load, compression-only p-y springs with the Takeda hysteresis model were assigned on four 

sides of the pile elements. The t-z springs were defined to provide both compressive and 

tensile resistance. The column, pile cap, and piles of the PH pier were modeled as fixed to 

each other.  

For the CRPF pier, the column was modeled using an elastic beam-column element 

and fixed to the pile cap shell elements. The geometry of the pile cap and its bumps were 

reproduced by the rigid links, similar to the PH pier model. The piles of the CRPF pier and 
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the surrounding soil were modeled to be identical to that of the PH pier model. To allow the 

pile cap to uplift with respect to the piles while transferring the lateral force to the piles, the 

zero-length gap elements, which were rigid for compression but had zero tensile strength, 

were assigned between the pile beam-column element and the rigid link representing the pile 

cap thickness (Figure 6.8). The bar fuses in the CRPF pier were modeled using the uniaxial 

nonlinear links. These links were assigned connecting the pile cap rigid links to the pile 

beam-column elements, and their force-elongation response was defined according to the 

model as shown in Figure 6.5. In light of the findings from Kalliontzis and Sritharan (2018), 

the mass and stiffness proportionate Rayleigh damping was used for both models with 5% 

and 7% damping ratios in the first and third modes, which were the most predominant 

translational components in the lateral and vertical directions. 

 

Figure 6.8  Schematic of the numerical models 

Response to Static Cyclic Loads 

Figure 6.9a shows the force-displacement responses of the CRPF and PH piers to the 

static cyclic loads. For the CRPF pier, the pile cap uplifts with respect to the two exterior 

piles (i.e., the left and right piles) and the pile underneath the column (i.e., the middle pile), 
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and the force in the bar fuses connecting to the two exterior piles were plotted as a function 

of column displacement in Figure 6.9b and Figure 6.9c, respectively. Under the cyclic loads, 

the CRPF pier rocked symmetrically on the top of the piles as expected. The pile 

decompression took place at a lateral load of 1086 kN (244 kips). With the pile cap uplifted 

from the piles, the bar fuses were subjected to tension, thereby producing additional 

resistance to the lateral force. After the fuse yielded at a lateral load of 2010 kN (452 kips), 

inelastic behavior dominated the response of the CRPF pier with a slight positive slope. 

When the lateral force was reversed, the pile cap set back to the piles, and the elongated bar 

fuses were compressed and yielded in compression. The bar fuses eventually fractured at a 

displacement of 1.07 m (42.1 in.), corresponding to a column drift ratio of 8.6%. The 

superstructure weight provided the necessary restoring force to recenter the pier when the 

applied lateral force was removed. Except the bar fuses, none of the components in the CRPF 

pier experienced the force exceeding its elastic limit. Thus, even experienced a large 

displacement, the pier maintained fully operational performance, and its seismic resistance 

can be rapidly recovered by only replacing the bar fuses. In contrast, the PH pier formed a 

plastic hinge in the column. Its damage levels corresponding to the different displacements 

(Figure 6.9a) were estimated as per Hose and Seible (1999). This revealed that, although the 

PH pier ensured the life safety when subjected to the large displacements, it sustained 

significant damages and residual displacement, which required weeks to months closure for 

repairing or even longer for replacement (Marsh and Stringer 2013). Figure 6.9d compares 

the equivalent viscous damping for the CRPF and PH piers. As expected, the PH pier 

dissipated more energy for a given displacement. Staring from a displacement of 0.25 m (9.8 

in.) (i.e., a column drift ratio of 2%), the equivalent damping of the CRPF pier was more than 
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10% and reached approximately 20% before the bar fuses fractured. It is worth noting that 

the damping ratio of the CRPF pier can be increased or decreased by adjusting the pile group 

layout and dimensions of the bar fuses. 

  
(a) (b) 

  
(c) (d) 

Figure 6.9  Responses to static cyclic loads: (a) force-displacement behavior; (b) pile cap 

uplift in the CRPF pier; (c) change in fuse force; and (d) equivalent viscous damping ratio 

Figure 6.10a and Figure 6.10b depict the force-displacement responses at the head of 

the exterior piles in the lateral and axial directions. When subjected to the cyclic loads, the 

displacements of the piles in both the CRPF and PH piers were limited, confirming that the 

design of the pile group was satisfactory. Compared with the moment-resisting connections 
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between the piles and pile cap for the PH pile, the pinned connections used in the CRPF pier 

reduced the lateral stiffness of the piles. When the CRPF pier rocked on the top of the pile 

group, only the piles in the exterior row transferred the applied loads, thus the piles in the 

CRPF pier experienced higher lateral forces than those of the PH pier. The bar fuses in the 

CRPF pier transferred tensile forces to the piles, while their yield strength limited the tensile 

force acting on the pile to be less than 679 kN (153 kips), regardless of the magnitude of the 

applied lateral force. 

  
(a) (b) 

Figure 6.10  Force-displacement response of the exterior piles in (a) lateral direction and (b) 

axial direction 

Response to Dynamic Free Vibrations 

The CRPF and PH piers experienced free vibrations to examine their dynamic 

characteristics. Two rectangular pulse accelerations were applied laterally as the base 

excitations to the CRPF and PH piers. As shown in Figure 6.11a, the duration of the 

excitations was 0.5 sec., and the amplitude of the low-intensity excitation and high-intensity 

excitation was 0.1 g and 0.5 g, respectively. Figure 6.11b shows the column lateral 

displacement time histories for the CRPF and PH piers when subjected to the two excitations, 

and Figure 6.11c depicts the force-displacement responses of the two piers. To demonstrate 
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the rocking response of the CRPF pier, the pile cap uplift with respect to the exterior piles 

was plotted in Figure 6.11d as a function of time. When subjected to the low-intensity 

excitation, no pile cap uplift occurred in the CRPF pier, and the column top displacement 

primarily resulted from the elastic deformation of the column. The PH pier also behaved in 

an elastic manner. Because of the similarity of their elastic characteristics, the CRPF and PH 

piers exhibited comparable column displacement time history responses.  

As the amplitude of the excitation increased to 0.5 g, both the CRPF and PH piers 

underwent the maximum displacement of approximately 0.44 m (17 in.), corresponding to a 

column drift ratio of 3.9%. The large displacement caused the plastic deformation in the 

column of the PH pier, leading to a considerable residual displacement of 0.18 m (7 in.), 

corresponding to a column drift ratio of 1.6%. In contrast, the CRPF pier recentered 

following the excitation. Its force-displacement response displayed the characteristic flag-

shape with a fat hysteretic loop, indicating that a significant amount of energy dissipated 

during the large displacement cycle, but minimal energy dissipation took place for small 

displacement cycles. Consequently, the rocking response of the CRPF pier was abruptly 

decayed during the first displacement cycle, but afterward the pier continuously rocked at the 

small displacement amplitude for a number of cycles. The rocking mechanism excited the 

vertical inertia effects and induced impact between the pile cap and piles, causing the change 

in column axial force. As shown in Figure 6.11e, when subjected to the high-intensity 

excitation, the changes in the column axial force were more pronounced for the CRPF pier 

than those of the PH pier, and the impulses can be detected when the impacts occurred. 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 6.11  Free vibration responses: (a) base excitation; (b) column displacement; (c) pile 

cap uplift for the CRPF pier; (d) force-displacement response; and (e) axial force in the 

column 

Response to Earthquake Ground Motions 

To further analyze the behavior of the CRPF pier, the numerical models were 

subjected to a total of six earthquake ground motions with the details presented in Table 6.1. 

All records were sourced from the PEER strong motion database (PEER 2019). The ground 

motions were selected to represent a wide range of excitation that was expected for a high 

seismic zone. The 5% damped acceleration response spectra of the selected ground motions 

are plotted as shown in Figure 6.12. 

Table 6.1  Summary of selected earthquake ground motions 

Motion Earthquake Year Magnitude Station component PGA (g) 

EQ 1 Chi-chi 1999 7.6 CHY080-N 0.86 

EQ 2 Chi-chi 1999 7.6 CHY028-N 0.69 

EQ 3 Tabas 1978 7.4 TAB-L1 0.85 

EQ 4 Kobe 1995 6.9 TAK000 0.62 

EQ 5 Loma Prieta 1989 6.9 LGP000 0.57 

EQ 6 Northridge 1994 6.7 JGB292 0.99 
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Figure 6.12  Spectral acceleration versus period 

Table 6.2 summarizes the response parameters of the CRPF and PH piers for each of 

the ground motions. The maximum column drifts of the CRPF were comparable or slightly 

higher than those of the PH pier. This behavior was attributed to the lower hysteretic 

damping in the CRPF pier. The residual drift of the CRPF pier remained below 0.1%, 

benefiting from its recentering capacity. However, the residual drifts of the PH pier were up 

to 0.7%. For the CRPF pier, the strains of the bar fuses were less than 0.076, corresponding 

to 44.7% of the ultimate strain capacity of the bar steel. As the rocking mechanism causing 

the change in the column axial force, Table 6.2 also lists the maximum compressive axial 

force in the column of the CRPF pier. The maximum force was 17370 kN (3905 kips), 

corresponding to an axial load ratio of 24%. 

Table 6.2  Response parameters for the CRPF and PH piers subjected to the ground motions 

Motion 

PH CRPF 

Max. drift 

ratio 

(%) 

Residual 

drift ratio 

(%) 

Max. drift 

ratio 

(%) 

Residual 

drift ratio 

(%) 

Max. strain 

of fuses 

(ε) 

Max. comp. axial 

force in column 

(kN) 

EQ 1 3.56 0.70 3.56 0.10 0.047 11116 

EQ 2 2.05 0.14 2.14 0.03 0.022 10880 

EQ 3 2.67 0.14 2.73 0.01 0.031 8683 

EQ 4 4.67 0.04 5.12 0.07 0.076 17370 

EQ 5 2.42 0.40 2.42 0.01 0.027 13206 

EQ 6 2.37 0.23 2.38 0.07 0.025 11859 
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Figure 6.13 compares the force-displacement hysteresis behaviors of the CRPF and 

PH piers for each of the ground motions. All the hysteresis curves exhibited no major 

strength degradation, indicating that both piers ensured life safety and collapse prevention. 

For the PH pier, given that the lateral displacement corresponding to damage level III were 

approximately 0.3 m (11.8 in.), it experienced moderate-to-significant damages when 

subjected to the ground motions of EQ 1 and EQ 4 and required closures for repairing. 

Despite the inelastic yielding of the bar fuses as expected, the CRPF pier did not experience 

inelastic deformations in the column, pile cap, and pile foundation for the ground motions, 

thus was immediately accessible for normal traffic. 

 

Figure 6.13  Force-displacement behaviors of the CRPF and PH piers for each of the ground 

motions 
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Conclusions 

This paper presents the controlled rocking pile foundation (CRPF) system with 

replaceable bar fuses designed for seismic resilience. The CRPF system features the precast 

pile cap that is allowed to uplift with respect to the piles and the replaceable bar fuses 

connecting the pile cap and piles. When subjected to a strong earthquake excitation, the pile 

cap is uplifted from the top of the pile foundation, causing the fuses to undergo inelastic 

deformation to dissipate seismic energy. The superstructure weight acting on the CRPF 

system provides restoring force to recenter the system. The CRPF system can be constructed 

on different types of pile foundations. For the different pile types, the conceptual connections 

are developed to efficiently attach the bar fuses. The seismic response of a bridge pier 

utilizing the CRPF system (CRPF pier) was numerically investigated and compared with that 

of a bridge pier designed to develop a flexural plastic hinge in the column (PH pier). The 

three-dimensional nonlinear analytical models of the CRPF and PH piers were subjected to 

static cyclic loads, dynamic free vibrations, and earthquake ground motions. The following 

conclusions were made based on the findings of this analytical study: 

 The CRPF system designed following the simplified approach successfully 

achieved the design objectives. When subjected to the cyclic lateral loads acting 

at the top of the column, the resistance of the CRPF pier was comparable to that 

of the PH pier as designed. The CRPF pier reached a column drift ratio of 8.6% 

without significant strength degradation and exhibited sufficient recentering 

capacity. The CRPF pier resulted in an elastic response of the column, pile cap, 

and pile foundation. The inelastic behavior only occurred in the bar fuses as 

expected. The inelastic deformation of the bar fuses provided the equivalent 

viscous damping ratio more than 10% and reached approximately 20% before the 
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bar fuses fractured. It is worth noting that the damping ratio corresponds to the 

configuration of the pile foundation and bar fuses, thus can be correspondingly 

adjusted according to the design requirements. 

 When subjected to the low-intensity excitation with a duration of 5 sec. and an 

amplitude of 0.1 g, the CRPF and PH piers deformed in an elastic manner and 

exhibited comparable free vibration behavior because of their similar elastic 

characteristics. As the amplitude of the excitation increased to 0.5 g, the pile cap 

of the CRPF pier uplifted with respect to the pile foundation, causing the bar fuses 

to undergo inelastic deformation and providing a large amount of hysteretic 

damping, thus abruptly decaying the free vibration of the CRPF. The energy 

dissipation of the CRPF pier significantly reduced after the first cycle of the free 

vibration because the fuses remained elastic during the following cycles.    

 Both the CRPF and PH piers provided life safety and collapse prevention when 

subjected to the earthquake ground motions. The column drift ratio of the CRPF 

pier did not exceed 5.12% for the duration of the shakings, and the residual drift 

ratio was less than 0.1%. In addition, all components except the bar fuses retained 

elastic response, and the strain of the bar fuses stayed below the acceptable limits 

suggested by the PRESSS design handbook (Pampanin et al. 2010), confirming 

the seismic resilience of the CRPF system. In contrast, the PH pier experienced 

the significant damage in the column and exhibited a residual drift up to 0.7%. 

Note that as the pile cap of the CRPF pier rocked on the top of the pile 

foundation, the axial force in the column was varied up to 4 times the design 
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value, suggesting the necessity of keeping a low column axial load ratio for 

design. 
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CHAPTER 7.    SUMMARY AND CONCLUSIONS 

Summary 

The focus of the studies presented in this dissertation was to investigate the seismic 

performance of the prefabricated bridge piers supported on pile foundations. Given that the 

widely adopted seismic design approach relies on the formation of plastic hinges in 

preselected locations (column ends in most of the cases) to protect bridges from collapse, the 

connections between prefabricated components must be able to remain elastic when the 

bridges are subjected to earthquakes. In response to these requests, a prefabricated column-

pile cap-pile system suitable for seismic regions was developed in light of the current state of 

the art. The system consists of precast column, precast pile cap, and pile foundation. The 

components are integrally connected utilizing column socket connection and pile pocket 

connections that are preformed in the pile cap with corrugated steel pipes (CSPs). To 

evaluate the side shear strength of the column socket connection with various connection 

parameters, an experimental study was performed using eight specimens that modeled the 

full-scaled connection interfaces. Each specimen consisted of a short precast column segment 

that was embedded in a socket on a precast foundation. When a compressive force is applied 

to the top of the column segment, the side shear acting on the connection interface produced 

the resistance. Thus, the side shear strength could be evaluated by loading the column 

segment until it experiences a sliding failure with respect to the foundation. The specimens 

were constructed with different surface texture for the embedded portion of the column 

segment and CSP-to-column segment clearance and were tested by subjecting them to 

monotonic and cyclic axial loading. Test results show that side shear mechanism in the 
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column socket connections can provide significant resistance, facilitating transfer of large 

vertical loads. 

An outdoor test was subsequently conducted on the column-pile cap-pile system at a 

cohesive soil site. The test unit was constructed as a half-scale representation of the column-

pile cap-pile system utilizing a precast column, a precast pile cap, four vertical steel piles, 

and four battered piles. The test unit was subjected to combined vertical and lateral loads 

applied to the top of the column, and a plastic hinge was formed in the column as the lateral 

load and column displacement gradually increased. The column socket connection and pile 

pocket connections maintained fixity with the formation of a plastic hinge in the column, 

evidencing that the seismic sufficiency of the system. 

After casting a concrete block on top of the pile cap surrounding the damage column, 

the foundation of the test unit was further tested under different combinations of vertical and 

lateral loads. Not only the magnitude of the loads were changed, but the height of lateral load 

was also varied to produce different overturning moment-to-lateral load ratio. The foundation 

exhibited significant resistance to the combined vertical and lateral loads and eventually 

failed due to the combined effects of pile buckling, damage in the pile pocket connections, 

and formation of the permanent gaps between the piles and cohesive soil. A numerical model 

with nonlinear springs representing soil resistances was developed for helping better 

understanding understand the behavior of the pile foundation. The experimental and 

analytical results show that the battered piles were subjected to larger axial forces but less 

bending moments than the vertical piles. 

In addition to ensure life safety and prevent collapse, seismic performance objectives 

such as immediately openings after an earthquake, shorter repair times, and lower repair 
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costs are also desired for bridges. Therefore, the controlled rocking pile foundation (CRPF) 

system with replaceable bar fuses was developed. The CRPF system allows the precast pile 

cap to rock on the top of pile foundation and dissipates seismic energy through the inelastic 

deformations of the bar fuses connecting the pile cap and piles. Its seismic performance was 

studied through the numerical approach and compared with that of a bridge pier designed to 

develop a flexural plastic hinge in the column. The analysis results show that, subjected to a 

severe earthquake, the CRPF system showed negligible residual displacement and 

maintained elastic behavior except the bar fuses as designed. The damaged fuses can be 

rapidly replaced to recover the bridge seismic resistance after the earthquake. 

Conclusions 

Conclusions drawn from the studies presented in this dissertation are presented 

below: 

Side shear strength of column socket connection 

 The intentionally roughened column surface, as required by AASHTO, is necessary 

to develop satisfactory side shear strength to sustain axial loads used in routine design 

practice. However, surface roughness smaller than an amplitude of 6-mm is adequate, 

which can be easily achieved by exposing the aggregates.  

 The column surface textures with deep amplitude (e.g., fluted fins) exhibited softer 

connection responses compared to the one with exposed aggregate surface finish. 

Thicker grout closure pour resulting from wider CSP-to-column clearance also 

reduced the stiffness of the socket connection. 

 For the column segment surface textures with deeper amplitude, the force transfer 

was more efficient when subjecting to high loads due to the increased surface 

roughness, enabling the load to be resisted over a shorter length. 
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 Exposed aggregate for column surface preparation, standard CSP, and high-strength 

grout are recommended for establishing socket connections effectively. For 

connections established as described in this study, the side stress limitations of 6.89-

MPa (1000-psi) and 4.83-MPa (700-psi) suggested, respectively, for the column-to-

grout interface and CSP-to-surrounding concrete interface to determine the minimum 

depth of the preformed socket. 

Performance of prefabricated column-pile cap-pile system 

 The system exhibited stable energy dissipation capacity as the plastic hinge was fully 

developed in the column, and the pile cap and connections remained undamaged 

throughout the test. This proved that the performance of the prefabricated column-pile 

cap-pile system was excellent and is believed to be at least as good as, if not better 

than, that of a conventional cast-in-place system. For the column socket connection, 

the embedment length equal to one times the column diameter is sufficient to allow a 

plastic hinge to be developed in the column. The pile embedment length of 1.5 times 

the depth of pile is also sufficient to maintain the fixity of the pile pocket connection. 

 Foundation flexibility produced a significant effect on the system response. About 

40% of column top displacement was due to the foundation flexibility prior to 

development of the column plastic hinge. As the damage progressed in the column, 

the foundation flexibility caused less effect in terms of column top displacement, 

while it still accounted for an important component when the effective lateral load 

reached its maximum. 

 The constructability advantages of the prefabricated column-pile cap-pile system are 

that it is quick and simple to build. The precast column and precast pile cap with no 
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projected reinforcement are easy to transport and are unlikely to be damaged during 

construction. Given the friction collar and grout with desirable characteristics 

(including high-early-strength, extended working time, and appropriated fluid 

consistency), construction of a column-pile cap-pile system can be completed within 

one day. 

Performance of pile foundation including battered piles 

 The pile group exhibited significant load resistances to the combined vertical and 

lateral loads. Under the load combinations with high overturning moment-to-lateral 

load ratio [i.e., the lateral load was applied at 2.13 m (7 ft) above the pile cap], the 

bending moments at the head of piles was negligible, and the applied loads were 

primarily resisted by the vertical reactions provided by the piles. When the 

overturning moment-to-lateral load ratio was reduced [i.e., the lateral load was 

applied at 0.30 m (1 ft) above the pile cap], in addition to the axial forces, the 

considerable bending moments were developed at the pile heads. 

 Precast pile cap showed a satisfactory performance and remained essentially 

undamaged under the different combinations of vertical and lateral loads. Sufficient 

pile-to-pile cap connections were established by embedding the pile heads into the 

preformed pockets. With the embedment length of 1.5 times the depth of the piles, the 

connections developed considerable resistances to the axial force and bending 

moment acting in the piles. Under the very large lateral loads, the significant tensile 

forces were induced to the piles, and the connections were damaged in a ductile 

manner. 
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 The numerical model adequately captured the behavior of the tested pile group. The 

nonlinear response of the piles and pile-to-pile cap connections was accounted for 

using the concentrated hinges and zero-length springs assigned to the pile elements. 

The soil resistances were represented by the nonlinear springs prescribed by p-y 

curves and t-z curves. These nonlinear curves developed from empirical formulations 

were adjusted using multipliers to account for the effects of the pile batter, plugin 

holes surrounding the piles, and group interaction. 

 Based on the results of analyses and the test observations, the battered piles were 

subjected to larger axial forces but less bending moments than the vertical piles. The 

role of batter was more prominent when the lateral load was applied close to the pile 

cap. 

Performance of CRPF system 

 The performance of a bridge pier supported on the CRPF system (CRPF pier) was 

numerically investigated and compared to that of a pier designed to form a plastic 

hinge in its column (PH pier). The CRPF system designed following the simplified 

approach successfully achieved the design objectives. When subjected to the cyclic 

lateral loads acting at the top of the column, the resistance of the CRPF pier was 

comparable to that of the PH pier as designed. The CRPF pier reached a considerable 

column drift ratio without significant strength degradation and exhibited sufficient 

recentering capacity. The CRPF pier resulted in an elastic response of the column, 

pile cap, and pile foundation. The inelastic behavior only occurred in the bar fuses as 

expected. The inelastic deformation of the bar fuses provided the equivalent viscous 

damping ratio up to approximately 20% before the bar fuses fractured. It is worth 
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noting that the damping ratio corresponds to the configuration of the pile foundation 

and bar fuses, thus can be correspondingly adjusted according to the design 

requirements. 

 When subjected to the low-intensity excitation with a duration of 5 sec. and an 

amplitude of 0.1 g, the CRPF and PH piers deformed in an elastic manner and 

exhibited comparable free vibration behavior because of their similar elastic 

characteristics. As the amplitude of the excitation increased to 0.5 g, the pile cap of 

the CRPF pier uplifted with respect to the pile foundation, causing the bar fuses to 

undergo inelastic deformation and providing a large amount of hysteretic damping, 

thus abruptly decaying the free vibration of the CRPF. The energy dissipation of the 

CRPF pier significantly reduced after the first cycle of the free vibration because the 

fuses remained elastic during the following cycles. 

 Both the CRPF and PH piers provided life safety and collapse prevention when 

subjected to the earthquake ground motions. The column drift ratio of the CRPF pier 

did not exceed 5.12% for the duration of the shakings, and the residual drift ratio was 

less than 0.1%. In addition, all components except the bar fuses retained elastic 

response, and the strain of the bar fuses stayed below the acceptable limits suggested 

by the PRESSS design handbook (Pampanin et al. 2010), confirming the seismic 

resilience of the CRPF system. In contrast, the PH pier experienced the significant 

damage in the column and exhibited a residual drift up to 0.7%. As the pile cap of the 

CRPF pier rocked on the top of the pile foundation, the axial force in the column was 

varied up to 4 times the design value, suggesting the necessity of keeping a low 

column axial load ratio for design. 
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